NCERT Solutions
Board Paper Solutions
Ask & Answer
School Talk
Login
GET APP
Login
Create Account
Popular
Latest
Stuti Srivastava
Subject: Maths
, asked on 20/5/18
How to break (k^3 +6k^2+9k+4) this such that it becomes (k+1)(k+1)(k+4).
Answer
1
Sanitya Srivastava
Subject: Maths
, asked on 28/4/18
Experts kindly help
Answer
3
Saswat Das
Subject: Maths
, asked on 14/4/18
Q.
Find the differentiation
$1.y={\mathrm{sin}}^{2}x-{\mathrm{cos}}^{2x}\phantom{\rule{0ex}{0ex}}2.y={\left({\mathrm{cos}}^{2}x+1\right)}^{3}\phantom{\rule{0ex}{0ex}}3.y=\mathrm{cos}{x}^{3}+{\mathrm{sin}}^{2}x\phantom{\rule{0ex}{0ex}}4.y=\frac{{\left(3{x}^{2}-9\right)}^{2}}{\mathrm{sin}x}$
Answer
1
Drishti
Subject: Maths
, asked on 23/3/18
$Showthat:-\phantom{\rule{0ex}{0ex}}\left|\begin{array}{ccc}1& 1& 1+3x\\ 1+3y& 1& 1\\ 1& 1+3x& 1\end{array}\right|=9(3xyz+xy+yx+zx)$
Answer
2
Ridhit Jain
Subject: Maths
, asked on 6/3/18
Prove by PMI
$3.{2}^{2}+{3}^{2}.{2}^{3}+...........+{3}^{n}{2}^{n+1}=\frac{12}{5}\left({6}^{n}-1\right)$
prove
Answer
1
Kanishk Sharma
Subject: Maths
, asked on 27/2/18
Q.4. Prove that
${3}^{3n}-26n-1$
is divisible by 676.
Answer
1
Dharunika Vijayakumar
Subject: Maths
, asked on 14/2/18
TELL ME THE ANSWER FOR 15th QUESTION . PLEASE TELL ME FAST
Q15. Prove that ( cos
$\theta +i\mathrm{sin}\theta $
)
^{n}
= cos
$\left(\mathrm{n}\mathrm{\theta}\right)+i\mathrm{sin}(\mathrm{n}\mathrm{\theta})$
, for all n
$\in $
N by using PMI.
Answer
3
Tanmaya Darisi
Subject: Maths
, asked on 8/2/18
Using PMI prove that 1 × 1! + 2 × 2! + 3 × 3! + -----+ n × n! = (n + 1)! – 1 for all n∈N
Answer
1
Naga Nandhini
Subject: Maths
, asked on 31/1/18
Experts,explain the one underlined after
Answer
1
Naga Nandhini
Subject: Maths
, asked on 31/1/18
prove that 1+2+3+....+n=n(n+1)/2 by pmi
Answer
1
Kabir Chhabra
Subject: Maths
, asked on 27/1/18
Q 5
$5.Provebyinductionthatforallnaturalnumbern\mathrm{cos}\left(\alpha \right)+\mathrm{cos}(\alpha +\beta )+\mathrm{cos}(\alpha +2\beta )+.........+\mathrm{cos}\left[\alpha +\left(n-1\right)\beta \right]=\frac{\mathrm{cos}\left(\alpha +{\displaystyle \frac{n-1}{2}}\beta \right)\mathrm{sin}\left({\displaystyle \frac{n\beta}{2}}\right)}{\mathrm{sin}\left({\displaystyle \frac{\beta}{2}}\right)}.\left(\mathbf{E}\right)$
Answer
0
Kabir Chhabra
Subject: Maths
, asked on 27/1/18
Q 5
$5.Provebyinductionthatforallnaturalnumbern\mathrm{sin}\left(\alpha \right)+\mathrm{sin}(\alpha +\beta )+\mathrm{sin}(\alpha +2\beta )+.........+\mathrm{sin}\left[\alpha +\left(n-1\right)\beta \right]=\frac{\mathrm{sin}\left(\alpha +{\displaystyle \frac{n-1}{2}}\beta \right)\mathrm{sin}\left({\displaystyle \frac{n\beta}{2}}\right)}{\mathrm{sin}\left({\displaystyle \frac{\beta}{2}}\right)}.\left(\mathbf{E}\right)$
Answer
0
Ashwini Upadhya
Subject: Maths
, asked on 20/1/18
Please solve it using mathematical induction
$Provethat(1+x{)}^{n}\ge \left(1+nx\right),forallnaturalnumbern,wherex-1bymathematicalinduction.$
Answer
2
Kavya S
Subject: Maths
, asked on 8/1/18
In a locality 50 children (of age between 10 to 14 yrs) can speak Hindi fluently, what can you say about the fluency in Hindi of all the other children (of age between 10 to 14 yrs) in the same locality? Does the principle of mathematical induction hold true in this case?
Answer
0
Kavya S
Subject: Maths
, asked on 5/1/18
In a locality 50 children (of age between 10 to 14 yrs) can speak Hindi fluently, what can you say about the fluency in Hindi of all the other children (of age between 10 to 14 yrs) in the same locality? Does the principle of mathematical induction hold true
in this case?
Answer
0
1
2
3
4
5
Next
What are you looking for?

Q. Find the differentiation

$1.y={\mathrm{sin}}^{2}x-{\mathrm{cos}}^{2x}\phantom{\rule{0ex}{0ex}}2.y={\left({\mathrm{cos}}^{2}x+1\right)}^{3}\phantom{\rule{0ex}{0ex}}3.y=\mathrm{cos}{x}^{3}+{\mathrm{sin}}^{2}x\phantom{\rule{0ex}{0ex}}4.y=\frac{{\left(3{x}^{2}-9\right)}^{2}}{\mathrm{sin}x}$

$3.{2}^{2}+{3}^{2}.{2}^{3}+...........+{3}^{n}{2}^{n+1}=\frac{12}{5}\left({6}^{n}-1\right)$prove

Q15. Prove that ( cos $\theta +i\mathrm{sin}\theta $)

^{n}= cos $\left(\mathrm{n}\mathrm{\theta}\right)+i\mathrm{sin}(\mathrm{n}\mathrm{\theta})$, for all n $\in $ N by using PMI.$5.Provebyinductionthatforallnaturalnumbern\mathrm{cos}\left(\alpha \right)+\mathrm{cos}(\alpha +\beta )+\mathrm{cos}(\alpha +2\beta )+.........+\mathrm{cos}\left[\alpha +\left(n-1\right)\beta \right]=\frac{\mathrm{cos}\left(\alpha +{\displaystyle \frac{n-1}{2}}\beta \right)\mathrm{sin}\left({\displaystyle \frac{n\beta}{2}}\right)}{\mathrm{sin}\left({\displaystyle \frac{\beta}{2}}\right)}.\left(\mathbf{E}\right)$

$5.Provebyinductionthatforallnaturalnumbern\mathrm{sin}\left(\alpha \right)+\mathrm{sin}(\alpha +\beta )+\mathrm{sin}(\alpha +2\beta )+.........+\mathrm{sin}\left[\alpha +\left(n-1\right)\beta \right]=\frac{\mathrm{sin}\left(\alpha +{\displaystyle \frac{n-1}{2}}\beta \right)\mathrm{sin}\left({\displaystyle \frac{n\beta}{2}}\right)}{\mathrm{sin}\left({\displaystyle \frac{\beta}{2}}\right)}.\left(\mathbf{E}\right)$

$Provethat(1+x{)}^{n}\ge \left(1+nx\right),forallnaturalnumbern,wherex-1bymathematicalinduction.$

in this case?