what is the value of e raised to infinity ?

Find the sum: 7+77+777+.....upto n terms.

If x^{y }=e^{x-y }show that

dy/dx=(logx)/{log(xe)}^{2 }

FIND VALUES OF a , b

Differentiatey=log( cosec^{x) }find dy/dx

If x = sint and y = sinpt prove that :

(1 - xsquare)d2y/dx2 - xdy/dx + psquarey = 0

if sqrt(1-x^{2)}+ sqrt(1-y^{2}) = a (x-y) prove dy/dx=sqrt((1-y^{2})/(1-x^{2}))

if x^{m} y^{n} = (x+y)^{m+n} show that dy/dx= y/x and find d^{2}y/dx^{2}

plzzz help !!

If y^{3 }= 3ax^{2 }- x^{3} then prove that d^{2}y/dx^{2} = -2a^{2}y^{2}/y^{5}

if y= [log(x+root x^{2}+1)]^{2 }show that (1+x^{2}) d^{2}y/dx^{2} +xdy/dx =2

if y= sin inverse [ 5x +12 root 1-x2 by 13 find dy by dx

k.c.sinha exercise-13.1 question-

y=xlog(x/(a+bx)), prove that x^3Xd^2y/dx^2 = (x(dy/dx)-y)^2

Differentiate tan^{-1} [ (root 1 - x^{2}) / x ]^{}w.r.t. cos^{-1} [2x (root 1 - x^{2})].

if e^{x}+e^{y}=e^{x+y},prove that dy/dx+e^{y-x}=0

Q. What is the degree of infinity raised to the power of one?

what is the value of

eraised to infinity ?Find the sum: 7+77+777+.....upto n terms.

^{-1}[(a+bcosx)/(b+acosx)] w.r.t xIf x

^{y }=e^{x-y }show thatdy/dx=(logx)/{log(xe)}

^{2 }FIND VALUES OF a , b

Differentiate

y=log( cosec

^{x) }find dy/dxIf x = sint and y = sinpt prove that :

(1 - xsquare)d2y/dx2 - xdy/dx + psquarey = 0

^{-1}y = 2log(x+1) show that (x+1)^{2}y + (x+1)y +4y = 0if sqrt(1-x

^{2)}+ sqrt(1-y^{2}) = a (x-y) prove dy/dx=sqrt((1-y^{2})/(1-x^{2}))^{2})y_{2}-xy_{1}-a^{2}y = 0if x

^{m}y^{n}= (x+y)^{m+n}show that dy/dx= y/x and find d^{2}y/dx^{2}plzzz help !!

If y

^{3 }= 3ax^{2 }- x^{3}then prove that d^{2}y/dx^{2}= -2a^{2}y^{2}/y^{5}if y= [log(x+root x

^{2}+1)]^{2 }show that (1+x^{2}) d^{2}y/dx^{2}+xdy/dx =2^{2}+ qx + r where p not equal to 0 and x belongs to [a,b]if y= sin inverse [ 5x +12 root 1-x2 by 13 find dy by dx

^{2) }where the tangent to the curve has the greatest slope^{}5^{x}+5^{y}= 5^{x+y }then prove that dy/dx + 5^{y-x}= 0k.c.sinha exercise-13.1 question-

Examine the continuity of the function F(x)= 1/ (x-3) for all x belongs to R.

y=xlog(x/(a+bx)), prove that x^3Xd^2y/dx^2 = (x(dy/dx)-y)^2

prove that

dy/dx= 2 - x/y

Differentiate tan

^{-1}[ (root 1 - x^{2}) / x ]^{}w.r.t. cos^{-1}[2x (root 1 - x^{2})].^{-1}(cot x/2)if e

^{x}+e^{y}=e^{x+y},prove that dy/dx+e^{y-x}=0Q. What is the degree of infinity raised to the power of one?