0.1010010001.... is non-terminating and non-repeating decimal. We say, it is an irrational number. Do you agree? Justify your answer. Write 5 irrational numbers.

 

Please find below the solution to the asked query:

We know irrational number have non terminating and non recurring decimal digits , So
0.1010010001.... is a irrational number .

Example :  Square root of any prime number ( 2 , 3 , 5 , 7 , . . .  )
Or

1.32373284620831... ,

0.1010010001....


Hope this information will clear your doubts about topic.
 

  • 1
YES ,
0.1010010001 is non terminating and non repeating decimal . Rational numbers are always ,  either terminating or non terminating repeating (recurring) decimal. Therefore , the given number is a irrational number because it is non terminating non recurring decimal. 
Examples of irrational numbers .
1)pi = 3.141592653589..........
2)root 2 = 1.41421356237..........
3)0.10100110001.........
4)122.1221221221.........
5)3.102030403020192........
 
  • 1
What are you looking for?