# a goldsmith mixes gold and copper in the ratio 5 8 . another goldsmith mixes these in the ratio 7 2 .which quality is better

Please find below the solution to the asked query :

$\frac{5}{8}\mathrm{and}\frac{7}{2}\phantom{\rule{0ex}{0ex}}\mathrm{LCM}\left(2,8\right)=8\phantom{\rule{0ex}{0ex}}\frac{7\times 4}{2\times 4}=\frac{28}{8}\phantom{\rule{0ex}{0ex}}\mathrm{Second}\mathrm{goldsmith}\mathrm{mixes}\mathrm{more}\mathrm{gold}.\phantom{\rule{0ex}{0ex}}\mathrm{So}\mathrm{quality}\mathrm{is}\mathrm{better}\mathrm{for}\mathrm{second}\mathrm{goldsmith}.$

$\frac{5}{8}\mathrm{and}\frac{7}{2}\phantom{\rule{0ex}{0ex}}\mathrm{LCM}\left(2,8\right)=8\phantom{\rule{0ex}{0ex}}\frac{7\times 4}{2\times 4}=\frac{28}{8}\phantom{\rule{0ex}{0ex}}\mathrm{Second}\mathrm{goldsmith}\mathrm{mixes}\mathrm{more}\mathrm{gold}.\phantom{\rule{0ex}{0ex}}\mathrm{So}\mathrm{quality}\mathrm{is}\mathrm{better}\mathrm{for}\mathrm{second}\mathrm{goldsmith}.$

Regards

**
**