ABCD is a rectangle and EFGH is a trapezium in the given figure. Prove that ar(ABCD) = ar(EFGH)

Dear Student,
Please find below the solution to the asked query:

Given: ABCD and EFGH are rectangle and trapezium, respectively, DE=CH and AH||FC.To prove: arABCD=arEFGHProof:DEF and CHG has equal bases DE and CH; and are between same parallel lines FG and AH.arDEF=arCHG        .....iAs, AH||FC , AF||QC and FP||CHSo, AFCQ and FCHP are parallelograms which are on same base FC and are between same parallels AH and FCarAFCQ=arFCHP        .....iiSimilarly, rectangle ABGF and parallelogram AFCQ are on same base AF and are between same parallels AF and BCSo, arABGF=arAFCQ        .....iiiAlso, CHG and parallelogram FCHP are on same base CH and are between same parallels CH and FGSo, arCHG=12arFCHP        .....ivFrom ii,iii and iv, we getarCHG=12arABGFarABGF=2 arCHGarABGF=arCHG+arDEF      From i          .....vNow,arABCD=arABGF+arDCGF=arCHG+arDEF+arDCGF        From varABCD=arEFGH

Hope this information will clear your doubts about the topic.

If you have any more doubts just ask here on the forum and our experts will try to help you out as soon as possible.

  • 9
What are you looking for?