For each of the following numbers, find the smallest whole number by which it should be multiplied so as to get a perfect square number. Also find the square root of the square number so obtained.
(i) 252 (ii) 180
(iii) 1008 (iv) 2028
(v) 1458 (vi) 768
(i)252 can be factorised as follows.

2
252
2
126
3
63
3
21
7
7
1
252 = 2 × 2 × 3 × 3 × 7
Here, prime factor 7 does not have its pair.
If 7 gets a pair, then the number will become a perfect square. Therefore, 252 has to be multiplied with 7 to obtain a perfect square.
252 × 7 = 2 × 2 × 3 × 3 × 7 × 7
Therefore, 252 × 7 = 1764 is a perfect square.
∴
(ii)180 can be factorised as follows.

2
180
2
90
3
45
3
15
5
5
1
180 = 2 × 2 × 3 × 3 × 5
Here, prime factor 5 does not have its pair. If 5 gets a pair, then the number will become a perfect square. Therefore, 180 has to be multiplied with 5 to obtain a perfect square.
180 × 5 = 900 = 2 × 2 × 3 × 3 × 5 × 5
Therefore, 180 × 5 = 900 is a perfect square.
∴ = 30
(iii)1008 can be factorised as follows.

2
1008
2
504
2
252
2
126
3
63
3
21
7
7
1
1008 = 2 × 2 × 2 × 2 × 3 × 3 × 7
Here, prime factor 7 does not have its pair. If 7 gets a pair, then the number will become a perfect square. Therefore, 1008 can be multiplied with 7 to obtain a perfect square.
1008 × 7 = 7056 = 2 × 2 ×2 × 2 × 3 × 3 × 7 × 7
Therefore, 1008 × 7 = 7056 is a perfect square.
∴ = 84
(iv) 2028 can be factorised as follows.

2
2028
2
1014
3
507
13
169
13
13
1
2028 = 2 × 2 × 3 × 13 × 13
Here, prime factor 3 does not have its pair. If 3 gets a pair, then the number will become a perfect square. Therefore, 2028 has to be multiplied with 3 to obtain a perfect square.
Therefore, 2028 × 3 = 6084 is a perfect square.
2028 × 3 = 6084 = 2 × 2 × 3 × 3 × 13 × 13
∴ = 78
(v) 1458 can be factorised as follows.

2
1458
3
729
3
243
3
81
3
27
3
9
3
3
1
1458 = 2 × 3 × 3 × 3 × 3 × 3 × 3
Here, prime factor 2 does not have its pair. If 2 gets a pair, then the number will become a perfect square. Therefore, 1458 has to be multiplied with 2 to obtain a perfect square.
Therefore, 1458 × 2 = 2916 is a perfect square.
1458 × 2 = 2916 = 2 × 2 × 3 × 3 × 3 × 3 × 3 × 3
∴ = 54
(vi) 768 can be factorised as follows.

2
768
2
384
2
192
2
96
2
48
2
24
2
12
2
6
3
3
1
768 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 3
Here, prime factor 3 does not have its pair. If 3 gets a pair, then the number will become a perfect square. Therefore, 768 has to be multiplied with 3 to obtain a perfect square.
Therefore, 768 × 3 = 2304 is a perfect square.
768 × 3 = 2304 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3
∴ = 48