# For each of the following numbers, find the smallest whole number by which it should be multiplied so as to get a perfect square number. Also find the square root of the square number so obtained.(i) 252 (ii) 180 (iii) 1008 (iv) 2028(v) 1458 (vi) 768

(i)252 can be factorised as follows.

 2 252 2 126 3 63 3 21 7 7 1

252 = 2 × 2 × 3 × 3 × 7

Here, prime factor 7 does not have its pair.

If 7 gets a pair, then the number will become a perfect square. Therefore, 252 has to be multiplied with 7 to obtain a perfect square.

252 × 7 = 2 × 2 × 3 × 3 × 7 × 7

Therefore, 252 × 7 = 1764 is a perfect square.

(ii)180 can be factorised as follows.

 2 180 2 90 3 45 3 15 5 5 1

180 = 2 × 2 × 3 × 3 × 5

Here, prime factor 5 does not have its pair. If 5 gets a pair, then the number will become a perfect square. Therefore, 180 has to be multiplied with 5 to obtain a perfect square.

180 × 5 = 900 = 2 × 2 × 3 × 3 × 5 × 5

Therefore, 180 × 5 = 900 is a perfect square.

= 30

(iii)1008 can be factorised as follows.

 2 1008 2 504 2 252 2 126 3 63 3 21 7 7 1

1008 = 2 × 2 × 2 × 2 × 3 × 3 × 7

Here, prime factor 7 does not have its pair. If 7 gets a pair, then the number will become a perfect square. Therefore, 1008 can be multiplied with 7 to obtain a perfect square.

1008 × 7 = 7056 = 2 × 2 ×2 × 2 × 3 × 3 × 7 × 7

Therefore, 1008 × 7 = 7056 is a perfect square.

= 84

(iv) 2028 can be factorised as follows.

 2 2028 2 1014 3 507 13 169 13 13 1

2028 = 2 × 2 × 3 × 13 × 13

Here, prime factor 3 does not have its pair. If 3 gets a pair, then the number will become a perfect square. Therefore, 2028 has to be multiplied with 3 to obtain a perfect square.

Therefore, 2028 × 3 = 6084 is a perfect square.

2028 × 3 = 6084 = 2 × 2 × 3 × 3 × 13 × 13

= 78

(v) 1458 can be factorised as follows.

 2 1458 3 729 3 243 3 81 3 27 3 9 3 3 1

1458 = 2 × 3 × 3 × 3 × 3 × 3 × 3

Here, prime factor 2 does not have its pair. If 2 gets a pair, then the number will become a perfect square. Therefore, 1458 has to be multiplied with 2 to obtain a perfect square.

Therefore, 1458 × 2 = 2916 is a perfect square.

1458 × 2 = 2916 = 2 × 2 × 3 × 3 × 3 × 3 × 3 × 3

= 54

(vi) 768 can be factorised as follows.

 2 768 2 384 2 192 2 96 2 48 2 24 2 12 2 6 3 3 1

768 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 3

Here, prime factor 3 does not have its pair. If 3 gets a pair, then the number will become a perfect square. Therefore, 768 has to be multiplied with 3 to obtain a perfect square.

Therefore, 768 × 3 = 2304 is a perfect square.

768 × 3 = 2304 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3

= 48

• 2
What are you looking for?