If (1 + cos) / (1 - cos) = 16/9, then find (1 + cot) / (1 - cot) ? Share with your friends Share 6 Varun.Rawat answered this 1+cos θ1-cos θ = 169⇒16-16 cos θ = 9 + 9 cos θ⇒25 cos θ = 7⇒cos θ = 725Now, sin θ = 1 - cos2θ = 1 - 49625 = 576625 = 2425Now, cot θ = cos θsin θ = 7/2524/25 = 724Now, 1 + cot θ1 - cot θ = 1 + 7241 - 724 = 3117 8 View Full Answer Rishad answered this We have, (1+cosx)/(1-cosx)=16/9 =>(2cos2x/2)/(2sin2x/2)=16/9 [1+cosx=2cos2x] =>cot2x/2=16/9 [1-cosx=2sin2x] =>cotx/2=4/3 =>cotx=7/24 [cot2x=(cot2-1)/2cotx] (1+cotx)/(1-cotx) =(1+7/24)/(1-7/24) =31/17 Hope this helps. 0