if   ln3 .logab3 = log1027 .ln10 then find a relation bet a and b such that a not equals b

Dear Student

Your question can be rewritten as

      ln3 . logab3=log1027 . ln10ln3ln10.logab3=log1027log103 . logab3 = log1027Multiply and divide by 3 on left hand side and transfer 3 in numerator to log term13log1033 . logab3=log1033logab3=3logab3=logaa3By comparing a3=b3a3-b3=0(a-b)(a2+b2+ab)=0but since it is given that abTherefore, the required relation is(a2+b2+ab)=0

Regards

  • 2
What are you looking for?