if the pth term of an A.P is q and the qth term is p, prove that its nth term is (p+q-n)
Let the A.P. be given by
a, a+d, a+2d, a+3d,.....
q = a + (p -1)d ... ( 1 )
p = a + (q -1)d ... ( 2 )
Subtracting ( 2 ) from ( 1 ),
q - p = (p - q)d => d = -1
Putting d = -1 in ( 1 ), a = p + q - 1
nte term = a + (n - 1)d
Substituting the values of a and d,
nth term = p + q - 1 + (n -1)(-1) = p + q - n.
- 36
according to question,
a + (p-1)d = q ....1
and a+(q-1)d = p ....2
by subtracting 2 from 1 we get,
(p-1)d - (q-1)d = q-p
d((p-1)-(q-1)) = (q-p)
d(p-1-q+1)= (q-p)
d(p-q) = (q-p)
so,d = -1 ......3
putting value of d in 1,we get,
a+(p-1) -1=q
a-p+1 = q
so,a= (q+p-1) ......4
now,we know that,
tn = a + (n-1)d
by putting the value of a and d,we get,
tn =(p+q-1) + (n-1)-1
=p+q-1-n+1
=(p+q-n).....proved!
good luck... :)
- 353
pth term = a + (p-1)d = q -----(i)
qth term = a?+ (q-1)d = p -----(ii)
(ii) - (i) gives
(q - p)d = p - q or d = -1
(i) gives? a = q - (p-1)d = q - (p-1)(-1) = q + p - 1
Hence,
nth term = a + (n-1)d = q + p -1 + (n-1)(-1) = q + p -1 + n +1 = p + q - n
- -4
- 4
pth term = a + (p-1)d = q -----(i)
qth term = a + (q-1)d = p -----(ii)
(ii) - (i) gives
(q - p)d = p - q or d = -1
(i) gives a = q - (p-1)d = q - (p-1)(-1) = q + p - 1
Hence,
nth term = a + (n-1)d = q + p -1 + (n-1)(-1) = q + p -1 + n +1 = p + q - n
- 4