In ∆ PQR ,Q=(0,0),PQ=2, Angle PQR=π/3 and the midpoint of QR has coordinate (2,0) then centroid of ∆ is.

Dear Student,
Please find below the solution to the asked query:

We have:Q0,0 and mid point of QRis 2,02,0=0+xR2,0+yR2=xR2,yR2xR2=2 and yR2=0xR=4 and yR=0Hence coordinates of R are 4,0On X-axisLet coordinates of P be h,kAs PQR=π3 Q is origin and R lies on X-axis, hence tanπ3 will beslope of PQslope of PQ=tanπ3k-0h-0=3k=h3PQ=2h-02+k-02=2h2+k2=4h2+h32=4h2+3h2=44h2=4h=±1Angle of π3 means P lies in first quadrant, henceh=1k=h3=3Hence we have: P1,3, Q0,0 and R4,0Hence centroid is 1+0+43,3+0+03=53,33=53,13

Hope this information will clear your doubts about this topic.

If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.

  • 0
What are you looking for?