# name 3 indian mathematicians who also contributed to sience & name 3 foreign mathematicians who also contributed to science .pls this mis my project i wan't answer fast

Indian Mathematicians

1) Aryabhata (475 A.D. -550 A.D.) is the first well known Indian mathematician. Born in Kerala, he completed his studies at the university of Nalanda. In the section Ganita (calculations) of his astronomical treatise Aryabhatiya (499 A.D.), he made the fundamental advance in finding the lengths of chords of circles, by using the half chord rather than the full chord method used by Greeks. He gave the value of as 3.1416, claiming, for the first time, that it was an approximation. (He gave it in the form that the approximate circumference of a circle of diameter 20000 is 62832.) He also gave methods for extracting square roots, summing arithmetic series, solving indeterminate equations of the type ax -by = c, and also gave what later came to be known as the table of Sines. He also wrote a text book for astronomical calculations, Aryabhatasiddhanta. Even today, this data is used in preparing Hindu calendars (Panchangs). In recognition to his contributions to astronomy and mathematics, India's first satellite was named Aryabhata.

2) Brahmagupta (598 A.D. -665 A.D.) is renowned for introduction of negative numbers and operations on zero into arithmetic. His main work was Brahmasphutasiddhanta, which was a corrected version of old astronomical treatise Brahmasiddhanta. This work was later translated into Arabic as Sind Hind. He formulated the rule of three and proposed rules for the solution of quadratic and simultaneous equations. He gave the formula for the area of a cyclic quadrilateral as where s is the semi perimeter. He was the first mathematician to treat algebra and arithmetic as two different branches of mathematics. He gave the solution of the indeterminate equation Nx²+1 = y². He is also the founder of the branch of higher mathematics known as "Numerical Analysis".

After Brahmagupta, the mathematician of some consequence was Sridhara, who wrote Patiganita Sara, a book on algebra, in 750 A.D. Even Bhaskara refers to his works. After Sridhara, the most celebrated mathematician was Mahaviracharaya or Mahavira. He wrote Ganita Sara Sangraha in 850 A.D., which is the first text book on arithmetic in present day form. He is the only Indian mathematician who has briefly referred to the ellipse (which he called Ayatvrit). The Greeks, by contrast, had studied conic sections in great detail.

3) Bhaskara (1114 A.D. -1185 A.D.) or Bhaskaracharaya is the most well known ancient Indian mathematician. He was born in 1114 A.D. at Bijjada Bida (Bijapur, Karnataka) in the Sahyadari Hills. He was the first to declare that any number divided by zero is infinity and that the sum of any number and infinity is also infinity. He is famous for his book Siddhanta Siromani (1150 A.D.). It is divided into four sections -Leelavati (a book on arithmetic), Bijaganita (algebra), Goladhayaya (chapter on sphere -celestial globe), and Grahaganita (mathematics of the planets). Leelavati contains many interesting problems and was a very popular text book. Bhaskara introduced chakrawal, or the cyclic method, to solve algebraic equations. Six centuries later, European mathematicians like Galois, Euler and Lagrange rediscovered this method and called it "inverse cyclic". Bhaskara can also be called the founder of differential calculus. He gave an example of what is now called "differential coefficient" and the basic idea of what is now called "Rolle's theorem". Unfortunately, later Indian mathematicians did not take any notice of this. Five centuries later, Newton and Leibniz developed this subject. As an astronomer, Bhaskara is renowned for his concept of Tatkalikagati (instantaneous motion).

4) Srinivasa Aaiyangar Ramanujan is undoubtedly the most celebrated Indian Mathematical genius. He was born at Erode in Tamil Nadu on December 22, 1887. During an illness in England, Hardy visited Ramanujan in the hospital. When Hardy remarked that he had taken taxi number 1729, a singularly unexceptional number, Ramanujan immediately responded that this number was actually quite remarkable: it is the smallest integer that can be represented in two ways by the sum of two cubes: 1729=1³+12³=9³+10³.

• 2

Foreign Mathematicians

1.Lenohard  Euler

2.Josiah Willard Gibbs

3.David Hilbert

• 1
What are you looking for?