Obtain all the zeroes of the polynomial f(x)= 2x^{4}-2x^{3}-7x^{2}+3x+6, if its two zeroes are√3/2 and - √3/2

**Given:**

*f*(*x*) = 2*x*^{4} –2*x*^{3} – 7*x*^{2} + 3*x* + 6

Now

So, *f* (*x*) = 2*x*^{4} – 2*x*^{3} – 7*x*^{2} + 3*x* + 6

= (2*x*^{2} – 3) (*x*^{2} – *x* – 2)

= (2*x*^{3} – 3) (*x* + 1) (*x* – 2)

Hence the other two zeroes of *f* (*x* ) are – 1 and 2.

**
**