Please help me with 4th sum

Dear Student,
Please find below the solution to the asked query:

In sumation form, L.H.S. can be written as:L.H.S.=r=023 r+1.25Cr.25Cr+2=r=023 r.25Cr.25Cr+2+r=023 25Cr.25Cr+2=25r=123 24Cr-1.25Cr+2+r=023 25Cr.25Cr+2  As r.nCr=n.n-1Cr-1 ;iNow r=023 25Cr.25Cr+2=25C0.25C2+25C1.25C3+25C2.25C4+....+25C23.25C25 ;iiConsider1+x251+1x25=25C0+25C1x+25C2x2+...25C25x2525C0+25C11x+25C21x2+25C31x3...25C251x25As you can see L.H.S. of ii will be obtained by mutliplying and equating coefficient of 1x2Coefficient  of 1x2 in 1+x251+1x25=Coefficient  of 1x2 in 1+x251+x25x25=Coefficient  of 1x2 in 1x251+x50=Coefficient of x23 in 1+x50 x23x25=1x2=50C23r=023 25Cr.25Cr+2=50C23 ;iiir=123 24Cr-1.25Cr+2=24C0.25C3+24C1.25C4+24C2.25C5+....+24C22.25C25 ;ivConsider:1+x241+1x25= 24C0+24C1x+24C2x2+.....+24C24x24 25C0+25C11x+25C2 1x2+25C31x3+..R.H.S. of iv will be obtained by multiplying and collecting coefficient of 1x3=Cofficient of 1x3 in 1+x241+1x25=Cofficient of 1x3 in 1+x241+x25x25=Cofficient of 1x3 in 1+x49x25=Cofficient of x22 in 1+x49=49C22r=123 24Cr-1.25Cr+2=49C22 ;vPutting values from iii and v in i we get:L.H.S.=25 49C22+50C23On comparing with R.H.S. given in the question we get:k=25, λ=22 and μ=232k-λ-μ=50-22-23=5

Hope this information will clear your doubts about this topic.

If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.

  • 0
What are you looking for?