# PLZ ANSWER DONT LINK. Find the ortho centre of the triangle whose vertices are (3,4)(4,0)(0,0)

$\Rightarrow \mathrm{x}=4\mathrm{y}...\left(3\right)\phantom{\rule{0ex}{0ex}}\mathrm{Put}\mathrm{the}\mathrm{value}\mathrm{of}\mathrm{x}\mathrm{in}\left(1\right),\mathrm{we}\mathrm{get}\phantom{\rule{0ex}{0ex}}4\mathrm{y}=-3\left(4\mathrm{y}\right)+12\phantom{\rule{0ex}{0ex}}\Rightarrow 4\mathrm{y}=-12\mathrm{y}+12\phantom{\rule{0ex}{0ex}}\Rightarrow 16\mathrm{y}=12\phantom{\rule{0ex}{0ex}}\Rightarrow \overline{)\mathbf{y}\mathbf{=}\frac{\mathbf{3}}{\mathbf{4}}}\phantom{\rule{0ex}{0ex}}\mathrm{Put}\mathrm{the}\mathrm{value}\mathrm{of}\mathrm{y}\mathrm{in}\left(3\right),\mathrm{we}\mathrm{get}\phantom{\rule{0ex}{0ex}}\mathrm{x}=4\left(\frac{3}{4}\right)\phantom{\rule{0ex}{0ex}}\Rightarrow \overline{)\mathbf{x}\mathbf{=}\mathbf{3}}\phantom{\rule{0ex}{0ex}}\mathrm{SO},\mathrm{the}\mathrm{coordinates}\mathrm{of}\mathrm{orthocentre}\mathrm{is}\left(3,\frac{3}{4}\right)\phantom{\rule{0ex}{0ex}}$

Regards

**
**