Prove that tan20 - sin20 = tan20 X sin20

LHS = tan2θ - sin2θ=sin2θcos2θ - sin2θ=sin2θ - sin2θ . cos2θcos2θ=sin2θ1 - cos2θcos2θ=sin2θ × sin2θcos2θ=sin2θ × sin2θcos2θ=sin2θ . tan2θ=RHS

  • 2
tan20-sin20
=(sin20÷cos20×sin20)
=(sin20-sin20×cos20)÷cos20
=[sin20 (1-cos20)]÷cos20
=tan20×sin20
  • 1
What are you looking for?