Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is.

A sphere of fixed radius (r) is given.

Let R and h be the radius and the height of the cone respectively.

The volume (V) of the cone is given by,

Now, from the right triangle BCD, we have:

h

∴ The volume is the maximum when

Hence, it can be seen that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is.

  • 37
What are you looking for?