Show that the curves 6x^2-5x+2y=0, 4x^2+8y^2=3 touch each other at (1/2,1/2).

Dear Student,
Please find below the solution to the asked query:

If two curves touch at 12,12, then slope of tangent at point 12,12 will be same for both the curvesWe have:6x2-5x+2y=0Differentiating with respect to x, we get:12x-5+2.dydx=0dydx=5-12x2dydx12,12=5-12×122=5-62=-12=m1We have4x2+8y2=3Differentiating with respect to x, we get:8x+16y.dydx=0dydx=-8x16y=-x2ydydx12,12=-122.12=-12=m2As m1=m2=-12Hence both curves touch each other at 12,12.

Hope this information will clear your doubts about this topic.

If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.

  • 5
What are you looking for?