Solve (a) 5^(x+1) + 5^(2-x)= 5^3+1 Experts please answer fast
The given equation is 5x+1 + 52–x = 53 + 1
5x+1 + 52–x = 53 + 1
⇒ 5x.51+52.5–x=125+1
⇒ 5.5x +
Let 5x = p
⇒ 5p2 + 25 = 126p
⇒ 5p2 – 126p + 25 = 0
⇒ 5p2 – 125p – p + 25 = 0
⇒ 5p (p – 25) –1 (p – 25) = 0
⇒ (5p – 1) (p – 25) = 0
⇒ 5p – 1= 0 or p – 25 = 0
⇒ 5x = 5–1 or 5x = 52
Comparing the indices of 5, we get
x = –1 or x = 2
Thus, the value of x is –1 or 2.