Solve this:

Q. Let A (a ,0), B (3a ,0) and C (x ,y) be the vertices of a triangle ABC. If a, x, & y are integers then 

   (A) ABC can be an equilateral triangle                                  (B) ABC cannot be equilateral triangle

   (C) ABC cannot be right angled triangle                                (D) none of these

Dear Student,

Please find below the solution to the asked query:

We have : Let A ( a ,0 ), B ( 3a ,0) and C ( x , y ) be the vertices of a triangle ABC. 

We know distance formula :  d  = x2 - x12 + y2 - y12

For AB we get : x1 = a , y1 = 0 and  x2 = 3 a , y1 = 0 , So 

AB  =  3 a - a2 + 0 - 02  = 2 a2= 2 a  unit

For AC we get : x1 = a , y1 = 0 and  x2 = x , y1 = y , So 

AC  = x - a2 + y - 02  = x - a2 + y2  unit

And for BC we get : x1 = 3 a , y1 = 0 and  x2 = x , y1 = y , So 

BC  = x - 3a2 + y - 02  = x - 3a2 + y2  unit

If we assume given triangle is a equilateral , Then we can say :  AB = AC  =  BC , So

Here we take AC =  BC and substitute values and get :

x - a2 + y2 = x - 3a2 + y2Taking whole square on both hand side we get :x - a2 + y2 = x - 3a2 + y2 x - a2 = x - 3a2 We know : m - n2 = m2 + n2 - 2 m n , So  x2 + a2 - 2 a x  =x2 + 9a2 - 6 a x 4 a x  = 8 a2 x  = 2 a
Here we can have value of x in integer as we take ' a '  also as an integer , Here we can say that given triangle can be equilateral when a and x are integers

At x  =  2 a we get our length of AC , As :

AC  = 2 a- a2 + y2  = a2 + y2  unit

And we take AB  =  AC and substitute values and get :

a2 + y2 = 2 aTaking whole square on both hand side we get : a2 + y22= 2 a2  a2 + y2=4 a2  y2=3 a2  y =3 a  
From above equation we can say that value of ' y '  always be an ' Irrational number ' ( As we know 3 is a Irrational number and Irrational number × Integer = Irrational number )

So,

Here we can say that given triangle ABC can not be equilateral when a , x and y are integers .

Therefore,

Option ( B )                                                                ( Ans )


Hope this information will clear your doubts about topic.

If you have any more doubts just ask here on the forum and our experts will try to help you out as soon as possible.

Regards

  • 1
What are you looking for?