The shortest distance between the parabolas y^2 = x-1 and x^2= y-1 is 3?2/k . Then find the value of k .
Please do this question both by Maxima and minima and simple method . Please please please do it by both the methods . Do not forget to do it by both the methods .

Dear Student,
Please find below the solution to the asked query:

Key point: Shortest is obtained is obtained along common normalWe havey2=x-1....ix2=y-1...iiy2=x-1x=y2+1If we replace y and x. then we gety=x2+1x2=y-1 which is iiHence given parabolas are inverse  of each other.Hence they are mirror images of each other with respect to line y=x.

Slope of line y=x is m=1Now required point should have this slope of 1 for its tangent atpoint of tangency at ends of common normal.x2=y-1Differentiate with respect to x:2x=dydxSet dydx=Slope=12x=1x=12Put in iix2=y-114=y-1y=54Hence we have P12,54 as required point on iiAs i and ii are inverse of each other, henceQ54,12 is the required point on iHence required distance is given by:PQ=12-542+54-122=342+342=324According to question:324=32kk=4Note: I am not sure which simple method you are mentioning. Please belittle more specific. Although method Ihave adopted is the easiest approach.

Hope this information will clear your doubts about this topic.

If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.

  • 106
What are you looking for?