What is the significance of time and technology in making a substance a resource?

Time:  Time is an important factor in making a substance resource. Resources are developed according to the needs of the people. The needs of people can differ from time to time. This change in needs leads to discoveries and inventions, making substance into resources. For example: Wind was just a substance a few years ago. Now it is an important resource for generating energy. The change in times has changed the demands for energy, which in turn has motivated people to find newer ways of generating energy, thus turning erstwhile substances into resources.
Technology: Unless the use of a substance is determined by inventions and innovation by means of technology, it does not become a resource. For example: when the technology of hydroelectricity was invented, it made the rivers a resource for generating electricity.


 

  • 89

The Nature TechnologyAs long as there have been people, there has been technology. Indeed, the techniques of shaping tools are taken as the chief evidence of the beginning of human culture. On the whole, technology has been a powerful force in the development of civilization, all the more so as its link with science has been forged. Technology—like language, ritual, values, commerce, and the arts—is an intrinsic part of a cultural system and it both shapes and reflects the system's values. In today's world, technology is a complex social enterprise that includes not only research, design, and crafts but also finance, manufacturing, management, labor, marketing, and maintenance.

In the broadest sense, technology extends our abilities to change the world: to cut, shape, or put together materials; to move things from one place to another; to reach farther with our hands, voices, and senses. We use technology to try to change the world to suit us better. The changes may relate to survival needs such as food, shelter, or defense, or they may relate to human aspirations such as knowledge, art, or control. But the results of changing the world are often complicated and unpredictable. They can include unexpected benefits, unexpected costs, and unexpected risks—any of which may fall on different social groups at different times. Anticipating the effects of technology is therefore as important as advancing its capabilities.

This chapter presents recommendations on what knowledge about the nature of technology is required for scientific literacy and emphasizes ways of thinking about technology that can contribute to using it wisely. The ideas are sorted into three sections: the connection of science and technology, the principles of technology itself, and the connection of technology and society. Chapter 8, The Designed World, presents principles relevant to some of the key technologies of today's world. Chapter 10, Historical Perspectives, includes a discussion of the Industrial Revolution. Chapter 12, Habits of Mind, includes some skills relevant to participating in a technological world.

In earlier times, technology grew out of personal experience with the properties of things and with the techniques for manipulating them, out of know-how handed down from experts to apprentices over many generations. The know-how handed down today is not only the craft of single practitioners but also a vast literature of words, numbers, and pictures that describe and give directions. But just as important as accumulated practical knowledge is the contribution to technology that comes from understanding the principles that underlie how things behave—that is, from scientific understanding.

Engineering, the systematic application of scientific knowledge in developing and applying technology, has grown from a craft to become a science in itself. Scientific knowledge provides a means of estimating what the behavior of things will be even before we make them or observe them. Moreover, science often suggests new kinds of behavior that had not even been imagined before, and so leads to new technologies. Engineers use knowledge of science and technology, together with strategies of design, to solve practical problems.

In return, technology provides the eyes and ears of science—and some of the muscle, too. The electronic computer, for example, has led to substantial progress in the study of weather systems, demographic patterns, gene structure, and other complex systems that would not have been possible otherwise. Technology is essential to science for purposes of measurement, data collection, treatment of samples, computation, transportation to research sites (such as Antarctica, the moon, and the ocean floor), sample collection, protection from hazardous materials, and communication. More and more, new instruments and techniques are being developed through technology that make it possible to advance various lines of scientific research.

Technology does not just provide tools for science, however; it also may provide motivation and direction for theory and research. The theory of the conservation of energy, for example, was developed in large part because of the technological problem of increasing the efficiency of commercial steam engines. The mapping of the locations of the entire set of genes in human DNA has been motivated by the technology of genetic engineering, which both makes such mapping possible and provides a reason for doing so.

As technologies become more sophisticated, their links to science become stronger. In some fields, such as solid-state physics (which involves transistors and superconductors), the ability to make something and the ability to study it are so interdependent that science and engineering can scarcely be separated. New technology often requires new understanding; new investigations often require new technology.

  • -27
What are you looking for?