#
While finding area of triangles in coordinate geometry chapter, sometimes we get area in NEGATIVE values. Then what should we do?(example is in the pic)

$\u2206BCD\phantom{\rule{0ex}{0ex}}{x}_{1}=3,{x}_{2}=-3,{x}_{3}=2\phantom{\rule{0ex}{0ex}}{y}_{1}=-2,{y}_{2}=-5,{y}_{3}\u2206=3\phantom{\rule{0ex}{0ex}}Area=\frac{1}{2}\left[{x}_{1}\left({y}_{2}-{y}_{3}\right)+{x}_{2}\left({y}_{3}-{y}_{1}\right)+{x}_{3}\left({y}_{1}-{y}_{2}\right)\right]\phantom{\rule{0ex}{0ex}}=\frac{1}{2}\left[3\left(-8\right)+\left(-3\right)\left(5\right)+2\left(3\right)\right]\phantom{\rule{0ex}{0ex}}=\frac{1}{2}\left[-24-15+6\right]\phantom{\rule{0ex}{0ex}}=\frac{-33}{2}uni{t}^{2}$

In such answers we neglect the -ve sign of the answer as the area can't be -ve.

Regards

**
**