NCERT Solutions for Class 10 Maths Chapter 8 Introduction To Trigonometry And Its Applications are provided here with simple step-by-step explanations. These solutions for Introduction To Trigonometry And Its Applications are extremely popular among class 10 students for Maths Introduction To Trigonometry And Its Applications Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the NCERT Book of class 10 Maths Chapter 8 are provided here for you for free. You will also love the ad-free experience on Meritnation’s NCERT Solutions. All NCERT Solutions for class 10 Maths are prepared by experts and are 100% accurate.

Page No 89:

Question 1:

Choose the correct answer from the given four options:
If cos A=45, then the value of tan A is
(A) 35

(B) 34

(C) 43

(D) 53

Answer:

Given: cos A = 45                                                  .....(1)
tan A=sin Acos A
We have the value of cos A, we need to find the value of sin A.
Also we know that, sin A=1-cos2A           .....(2)               (∵ sin2 θ +cos2 θ = 1)

Substituting (1) in (2), we get
sinA=1-1625=925=35

Therefore, 
tan A = 3545=34

Hence, the correct answer is Option(B).



Page No 90:

Question 2:

Choose the correct answer from the given four options:
If sin A=12 then the value of cot A is
(A) 3

(B) 13

(C) 32

(D) 1

Answer:

Given: sin A=12                                                                      .....(1)
And we know that, cot A=1tan A=cos Asin A                             .....(2)
We need to find the value of cos A.
cos A=1-sin2A                                                                 .....(3)                  (∵ sin2θ +cos2θ = 1)

Substituting (1) in (3), we get
cos A = 1-14 = 34 =32

Substituting values of sin A and cos A in (2), we get
cot A=3212=3
Hence, the correct answer is Option(A).

Page No 90:

Question 3:

Choose the correct answer from the given four options:
The value of the expression [cosec (75° + θ) – sec (15° – θ) – tan (55° + θ) + cot (35° – θ)] is
(A) – 1
(B) 0
(C) 1
(D) 32

Answer:

We have,cosec (75° + θ) – sec(15°- θ) - tan(55° + θ) + cot(35°- θ)

= cosec[90°-(15°- θ)] – sec(15°- θ) – tan(55° + θ) + cot[ 90°- (55° + θ)]

= sec(15°- θ) – sec(15°- θ) - tan(55° + θ) + tan(55° + θ)             (∵cosec (90°- θ) = sec θ and cot(90°- θ) = tan θ)
= 0

Hence, the correct answer is Option(B).

Page No 90:

Question 4:

Choose the correct answer from the given four options:
Given that sin θ=ab, then cos θ

is equal to
(A) bb2-a2

(B) ba

(C) b2-a2b

(D) ab2-a2

Answer:

Given : sin θ=ab
We know that, sin2θ + cos2θ =1
⇒ cos2θ = 1 - sin2θ
cos θ =1-sin2θ=1-ab2= b2-a2b

Hence, the correct answer is Option(C).

Page No 90:

Question 5:

Choose the correct answer from the given four options:
If cos (α + β) = 0, then sin (α – β) can be reduced to
(A) cos β
(B) cos 2β
(C) sin α
(D) sin 2α

Answer:

Given: cos(α + β) = 0
We can write, cos(α + β) = cos 90° (∵  cos 90° = 0)
By comparing cosine equation on either sides,
We get(α + β) = 90°
⇒ α = 90° - β
Now we need to reduce sin (α - β )
So, sin(α - β)
= sin(90°- β - β)                  (∵ α = 90°- β)
= sin(90°-2β)
= cos 2β                                  (∵ sin(90°- θ) = cos θ)

Therefore, sin(α - β) = cos 2β
Hence, the correct answer is Option(B).

Page No 90:

Question 6:

Choose the correct answer from the given four options:
The value of (tan1° tan2° tan3° ... tan89°) is
(A) 0

(B) 1

(C) 2

(D) 12

Answer:

The value of tan 1°. tan 2°.tan 3° …… tan 89°

= tan1°.tan 2°.tan 3°…tan 43°.tan 44°.tan 45°.tan 46°.tan 47°…tan 87°.tan 88°.tan 89°

= tan1°.tan 2°.tan 3°…tan 43°.tan 44°.1.tan 46°.tan 47°…tan 87°.tan 88°.tan 89°                     (∵ tan 45° = 1)

= tan1°.tan 2°.tan 3°…tan 43°.tan 44°.1.tan(90° - 44°).tan(90° - 43°)…tan(90° - 3°). tan(90°- 2°).tan(90°-1°)

= tan1°.tan 2°.tan 3°…tan 43°.tan 44°.1.cot 44°.cot 43°…cot 3°.cot 2°.cot 1°                             (∵ tan(90°- θ) = cot θ)
= tan1°.tan 2°.tan 3°…tan 43°.tan 44°.1.1tan 44°.1tan 43°....1tan 3°.1tan 2°.1tan 1°
= 1
Hence, the correct answer is Option (B).



Page No 90:

Question 7:

Choose the correct answer from the given four options:
If cos 9α = sinα and 9α < 90°, then the value of tan5α is
(A) 13

(B) 3

(C) 1

(D) 0

Answer:

Given: cos 9α = sin α and 9α < 90° i.e. 9α is an acute angle

And we know that, sin(90°- θ) = cos θ by property.
So, we can write cosine in terms of sine using this property,
cos 9α = sin (90° - 9α)
Thus, sin (90° - 9α) = sinα                                (∵cos 9α = sin(90° - 9α) and sin(90°- α) = sinα )
⇒ 90°-9αα
⇒ 10α = 90°              (By rearranging)
α = 9°
We have got the value of α i.e. α = 9°
Putting it in tan 5α, we get
tan 5α = tan (5×9) = tan 45° = 1
∴ tan 5α = 1

Hence, the correct answer is Option(C).

Page No 90:

Question 8:

Choose the correct answer from the given four options:
If ΔABC is right angled at C, then the value of cos (A + B) is

(A) 0

(B) 1

(C) 12

(D) 32

Answer:

Given: ∠C = 90°
By the property of triangle, the sum of the three angles is equal to 180°
∠A + ∠B + ∠C = 180°
⇒ ∠A + ∠B + 90° = 180°           (∵ ∠C = 90° )
⇒ ∠A + ∠B = 90°

Thus, cos(A + B) = cos 90° = 0

Hence, the correct answer is Option(A).

Page No 90:

Question 9:

Choose the correct answer from the given four options:
If sin A + sin2 A = 1, then the value of the expression (cos2 A + cos4 A) is

(A) 1

(B) 12

(C) 2

(D) 3

Answer:

Given: sin A + sin2 A = 1
⇒ sin A = 1 – sin2 A
⇒ sin A = cos2 A                                  (∵ sin2 θ +cos2 θ = 1 )
Squaring both sides, we get
⇒ sin2 A = cos4 A or
⇒cos4 A = sin2 A
⇒cos4 A = 1 – cos2 A
∴ cos2 A + cos4 A = 1
Hence, the correct answer is Option(A).

Page No 90:

Question 10:

Choose the correct answer from the given four options:
Given that sinα=12 and cosβ=12, then the value of (α + β) is
(A) 0°
(B) 30°
(C) 60°
(D) 90°

Answer:

Given: sinα=12 and cosβ=12

sin α = 12 = sin 30° and cos β = 12 = cos 60°
Comparing each sine and cosine angles respectively, we get
α = 30° and β = 60°

Thus, α + β = 30° + 60° =  90°

Hence, the correct answer is Option(D).    



Page No 91:

Question 11:

Choose the correct answer from the given four options:
The value of the expression sin222°+sin268°cos222°+cos268°+sin263°+cos 63°sin 27° is
(A) 3
(B) 2
(C) 1
(D) 0

Answer:

Given, sin222°+sin268°cos222°+cos268°+sin263°+cos 63°sin 27°

= sin2 22°+sin2 68°cos2 22°+cos2 68°+sin2 63°+cos 63° sin90-63°                         

sin2 22°+sin2 68°cos2 22°+cos2 68°+sin2 63°+cos 63°cos63°                           [sin (90-θ) = cos θ ]

sin2 22°+sin2 68°cos2 22°+cos2 68°+sin2 63°+cos2 63° 

=  sin2 22°+sin2 68°cos2 22°+cos2 68°+1                                                            [ sin2θ + cos2θ = 1 ]

=  sin2 22°+cos2 22°cos2 22°+sin2 22°+1                                                  [sin (90-θ) = cos θ ]

11+1 
= 2 

Hence, the correct answer is Option(B).

Page No 91:

Question 12:

Choose the correct answer from the given four options:
If 4 tanθ=3, then 4 sinθ-cosθ4sinθ+cosθ is equal to
(A) 23

(B) 13

(C) 12

(D) 34

Answer:

Given: 4 tan θ = 3                                                           .....(1)

We have to evaluate,  4 sinθ-cosθ4sinθ+cosθ

Dividing numerator and denominator by cos θ and substituting (1), we get 

 4 sinθ-cosθcosθ4sinθ+cosθcosθ=4 sinθcosθ-cosθcosθ4 sinθcosθ+cosθcosθ=4tanθ-14tanθ+1=4×34-14×34+1=24=12

Hence, the correct answer is Option(C).

Page No 91:

Question 13:

Choose the correct answer from the given four options:
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is
(A) 1

(B) 34

(C) 12

(D) 14

Answer:

Given: sinθ – cosθ = 0
 sinθ = cosθ
 sinθcosθ = 1
tan θ = 1
And we know, tan 45° = 1
So, tan θ = 1 = tan 45°
By comparing above equation, we get θ = 45°
sin4θ + cos4θ=sin4(45)°+cos4(45)°=124+124=14+14=12

Hence, the correct answer is Option(C).

Page No 91:

Question 14:

Choose the correct answer from the given four options:
sin (45° + θ) – cos (45° – θ) is equal to
(A) 2cosθ
(B) 0
(C) 2sinθ
(D) 1

Answer:

As we know that, sin(90°-θ) = cos θ by sine property.

So, sin(45° + θ- cos(45°- θ)

= sin[90°- ( 45°- θ)] - cos(45°- θ)

= cos(45°- θ- cos(45°- θ)                                (By using identity)

= 0

Hence, the correct answer is Option (B).

Page No 91:

Question 15:

Choose the correct answer from the given four options:
A pole 6 m high casts a shadow 23 m long on the ground, then the Sun’s elevation is
(A) 60°
(B) 45°
(C) 30°
(D) 90°

Answer:

Let's assume AB = 2√3 m, i.e. length of shadow on the ground from the pole and BC = 6 m, i.e. height of the pole as mentioned in the diagram.


Let sun make an angle of θ on the ground, such that ∠CAB = θ


So in ∆ABC, tan θBCAB       (∵ tan θ = perpendicularbase)

tanθ = 623

⇒ tan θ = tan 60° (∵ tan 60° = 3)
By comparing, we get
θ = 60°
Thus, the sun’s elevation is 60°.

Hence, the correct answer is Option(A).



Page No 93:

Question 1:

Write ‘True’ or ‘False’ and justify your answer in each of the following:
tan 47°cot 43°=1

Answer:

True

tan 47°cot 43°=tan (90-43)°cot 43°=cot 43°cot 43°= 1  (∵ tan (90°- θ) = cot θ)

Page No 93:

Question 2:

Write ‘True’ or ‘False’ and justify your answer in each of the following:
The value of the expression (cos2 23° – sin2 67°) is positive.

Answer:

False

cos2 23° – sin2 67° = (cos 23° + sin 67°) (cos 23° – sin 67°)                                  [∵  a– b2) = (a + b)(ab)]

= [cos 23° + sin(90°– 23°)] [cos 23°– sin(90°– 23°)]

= (cos 23°+ cos 23°)(cos 23° – cos 23°)                                                                  [∵ sin(90°-θ) = cos θ ]

= (cos 23° + cos 23°).0

= 0, which is neither positive nor negative.

Page No 93:

Question 3:

Write ‘True’ or ‘False’ and justify your answer in each of the following:
The value of the expression (sin 80° – cos 80°) is negative.

Answer:

False

We know,
sin θ increases when 0° ≤ θ ≤ 90°
cos θ decreases when 0° ≤ θ ≤ 90°

And (sin 80°- cos 80°) = (increasing value - decreasing value) which is always equal to a positive value.
∴ (sin 80°- cos 80°) > 0, which is positive (not negative).

Page No 93:

Question 4:

Write ‘True’ or ‘False’ and justify your answer in each of the following:
1-cos2θ sec2θ=tan θ

Answer:

LHS = 1-cos2θ sec2θ

sin2θsec2θ                                    sin2θ+cos2θ = 1

sin2θ(cos2θ)                                           sec2θ = 1cos2θ
sinθcosθ
tan θ

= RHS

Hence, the given expression is True.

Page No 93:

Question 5:

Write ‘True’ or ‘False’ and justify your answer in each of the following:
If cos A + cos2A = 1, then sin2A + sin4A = 1.

Answer:

True

Given: cos A + cos2A = 1
⇒ cos A = 1- cos2A                                    (∵ sin2θ  + cos2θ = 1 ⇒ sin2θ = 1- cos2θ)
⇒ cos A = sin2A                                           .....(1)
Squaring both sides,
we get cos2A = sin4A                                  .....(2)

We have to find whether sin2A + sin4 A = 1

So, adding (1) and (2), we get

sin2A + sin4 A = cos A + cos2A                                    (As given)
∴ sin2A+ sin4 A = 1

Hence, the given statement is True.

Page No 93:

Question 6:

Write ‘True’ or ‘False’ and justify your answer in each of the following:
(tan θ + 2) (2 tan θ + 1) = 5 tan θ + sec2θ.

Answer:

False

L.H.S= (tan θ + 2) (2 tan θ + 1)

Multiplying them,

= 2 tan2θ + tan θ + 4 tan θ + 2

= 2 tan2θ + 5 tanθ + 2

= 2(sec2θ-1) + 5tanθ + 2                                 (∵ sec2θ - tan2θ = 1 ⇒ tan2θ = sec2θ-1)
= 2 sec2θ - 2 + 5 tan θ + 2
= 5 tan θ + 2 sec2 θ ≠R.H.S
∴, L.H.S ≠ R.H.S

Hence, the given expression is False.

Page No 93:

Question 7:

Write ‘True’ or ‘False’ and justify your answer in each of the following:
If the length of the shadow of a tower is increasing, then the angle of elevation of the sun is also increasing.

Answer:

False

Let us understand this by an example: A tower of 30 m high casts a shadow 103 m long on the ground, then the sun’s elevation is 60°.

In ACB,tan θ=BCAB=30103                             tan θ=PerpendicularBasetan θ=33=3     
⇒ tan θ = tan 60°
θ = 60°

Now, if the same height of the tower casts a shadow 203 m more than that from the preceding length, then the Sun’s elevation becomes 30°.


In APB,tanθ=ABPB=ABPC+CB 

tanθ=30103+203=30303=13=tan 30°
θ = 30°

Hence, we can conclude that as the length of the shadow of the tower increases, the angle of elevation of the sun decreases. And the above statement is false.

Page No 93:

Question 8:

Write ‘True’ or ‘False’ and justify your answer in each of the following:
If a man standing on a platform 3 metres above the surface of a lake observes a cloud and its reflection in the lake, then the angle of elevation of the cloud is equal to the angle of depression of its reflection.

Answer:

False

Let P be the point where the man is standing, C be the point of cloud and the height of the cloud from the surface of the platform is h.
The angles, θ= the angle of elevation of the cloud and θ2 = the angle of depression of the cloud.

The height of reflection of cloud is h + 3 because height of lake is also added to the platform’s height.

So, the angle of depression is different in lake to the angle of elevation of cloud above the surface of the lake.

In MPC,

tan θ1=CMPM = hPM
tan θ1h=1PM                                                                    .....(1)

In PMD,

tan θ2=MDPM = MO+ODPM=3+hPM
tan θ23+h=1PM                                                                   .....(2)

From (1) and (2) we get,

tan θ1h=tan θ23+h
θ1θ2

∴ This proves that the angle of elevation is not equal to the angle of depression of the sun.

Page No 93:

Question 9:

Write ‘True’ or ‘False’ and justify your answer in each of the following:
The value of 2sinθ can be a+1a, where a is a positive number, and a ≠ 1.

Answer:

False

Given: a is a positive number and a ≠ 1

⇒ AM ≥ GM
(Arithmetic Mean (AM) of a list of non-negative real numbers is greater than or equal to the Geometric mean (GM) of the same list)

If a and b be such numbers, then

AM=a+b2  and GM = ab

By assuming that  a+1a= 2sinθ  is true 
Applying the inequality on a and 1a , we get 
a+1a2a×1aa+1a21a+1a2
2 sinθ 2              ( By our assumption)

⇒ sin θ ≥ 1

But -1 ≤ sin θ ≤ 1

∴ Our assumption is wrong and that 2 sin θ cannot be equal to a+1a.

Page No 93:

Question 10:

Write ‘True’ or ‘False’ and justify your answer in each of the following:
cos θ=a2+b22ab, where a and b are two distinct numbers such that ab > 0.

Answer:

False

Given: ab and ab > 0
(Because Arithmetic Mean (AM) of a list of non-negative real numbers is greater than or equal to the Geometric mean (GM) of the same list)
⇒ AM ≥ GM
If a and b be such numbers, then
AM=a+b2, GM = ab
By assuming that cos θ=a2+b22ab   is true statement.

Similarly, AM and GM of a2 and b2 will be,

AM=a2+b22GM=a2b2

So a2+b22a2×b2         (By AM and GM property as mentioned earlier in the answer)
a2+b22aba2+b22ab1
cos θ 1                                                             ( By our assumption)

But this is not possible since −1 ≤ cos θ ≤ 1
Thus, our assumption is wrong.

Page No 93:

Question 11:

Write ‘True’ or ‘False’ and justify your answer in each of the following:
The angle of elevation of the top of a tower is 30°. If the height of the tower is doubled, then the angle of elevation of its top will also be doubled.

Answer:

False

Let the height of the tower be h and BC = x m.

In ∆ABC,

tan30°=ACBC13=hx     .....1

Now, let the height be 2h (doubled).

In PQR, tanθ=PRQR=2hx
tanθ=23=1.15
θ = tan-1(1.15) < 60°                                     (∵ tan-1 (1.15) = 49°)

Hence, the angle of elevation is not doubled when height is doubled.

Page No 93:

Question 12:

Write ‘True’ or ‘False’ and justify your answer in each of the following:
If the height of a tower and the distance of the point of observation from its foot, both, are increased by 10%, then the angle of elevation of its top remains unchanged.

Answer:

True
Let height of the tower be h and distance of the point from its foot is x.
Let angle of elevation be θ1.

In ABC,

tan θ1=ACBC=hx
θ1=tan-1hx                                                               .....(1)
Now, when both(height and distance) are increased by ten percent, we get 
New height = h + 10% of  h1110h
New distance = x + 10% of  x = 1110x

In PQR,

tan θ2=PRQR=11h1011x10                                                 .....(2)
θ2=tan-1hx
From (1) and (2)  we get θ1 = θ2

Hence, it is true.



Page No 95:

Question 1:

Prove the following sinθ1+cosθ+1+cosθsinθ=2cosecθ

Answer:

LHS=sinθ1+cosθ+1+cosθsinθ=sin2θ+1+cosθ2sinθ1+cosθ=sin2θ+1+cos2θ+2cosθsinθ1+cosθ                a+b2=a2+b2+2ab=1+1+2cosθsinθ1+cosθ                                   sin2θ+cos2θ=1=21+cosθsinθ1+cosθ=2sinθ=2cosecθ                                              cosecθ=1sinθ=RHS

Hence proved.

Page No 95:

Question 2:

Prove the following: tan A1+sec A-tan A1-sec A=2cosec A

Answer:

LHS=tanA1+secA-tanA1-secA=tanA1-secA-tanA1+secA1+secA1-secA=tanA1-secA-1-secA1-sec2A=tanA-2secA1-sec2A                                                        a+ba-b=a2-b2=2tanA secAsec2A-1  = 2tanAsecAtan2A                                                             sec2A-tan2A=1=2 secAtanA=2cosAsinAcosA=2sinA=2cosecA=RHS                                               

Hence proved.

Page No 95:

Question 3:

Prove the following:
If tan A=34, then sin Acos A=1225

Answer:

tanA=34=Perpendicular(P)Base(B)
Let P=3x and B=4x.
By pythagoras theorem
H2 = P2 + B2 = (3x)2 + (4x)2
H2 = 25x2
∴ H = 5x



sinA=PH=3x5x=35cosA=BH=4x5x=45sinA cosA=35×45=1225

Hence proved.

Page No 95:

Question 4:

Prove the following
(sin α

+ cos α) (tan α

+ cot α

) = sec α

+ cosec α

.

Answer:


sinα+cosαtanα+cotα=sinα+cosαsinαcosα+cosαsinα                                       tanα=sinαcosα and cotα=cosαsinα=sinα+cosαsin2α+cos2αsinαcosα    =sinα+cosα1sinαcosα                                              sin2α+cos2α=1=1cosα+1sinα                                                                   secα=1cosα and cosecα=1sinα=secα+cosecα=RHS

Hence proved.

Page No 95:

Question 5:

Prove the following:
3+13-cot 30°=tan3 60°-2 sin 60°

Answer:



RHS=tan360o-2sin60o=33-2×32=33-3=23LHS=3+13-cot30o=3+1×3-3=3+1×3×3-1=332-1=23

Thus, LHS = RHS.

Hence proved.

Page No 95:

Question 6:

Prove the following: 1+cot2 α1+cosec α=cosec α

Answer:


LHS=1+cot2α1+cosecα=1+cos2αsin2α1+1sinα                                         cotα=cosαsinα and cosecα=1sinα=1+cos2αsinα1+sinα=sinα1+sinα+cos2αsinα1+sinα=sinα+sin2α+cos2αsinα1+sinα=1+sinαsinα1+sinα                                          sin2α+cos2α=1=1sinα=cosecα                                         1sinα=cosecα =RHS

Hence proved.

Page No 95:

Question 7:

Prove the following tan θ + tan (90° – θ

) = sec θ

sec (90° – θ

)

Answer:


LHS=tanθ+tan90°-θ=tanθ+cotθ                                          tan90°-θ=cotθ=sinθcosθ+cosθsinθ                                    tanθ=sinθcosθ and cotθ=cosθsinθ =sin2θ+cos2θsinθ cosθ                                     sin2θ+cos2θ=1=1sinθcosθ=secθ cosecθ                secθ=1cosθ and cosecθ=1sinθ=secθ sec90°-θ                                sec90°-θ= cosecθ=RHS

Hence proved.

Page No 95:

Question 8:

Find the angle of elevation of the sun when the shadow of a pole h metres high is 3 h metres long.

Answer:

Let the angle of the sun be θ
Given, the height of the pole is h.



Now in  ABC,
tanθ=ACBCtanθ=h3htanθ=13tanθ=tan30°θ=30o

Thus, the angle of elevation of the sun is 30o.

Page No 95:

Question 9:

If  3 tan θ=1, then find the value of sin2

θ

– cos2θ .

Answer:

Given: 3tanθ=1
tan θ=13tan θ=tan30°θ=30o

Now,
sin2θ-cos2θ=sin230o-cos230o=122-322=14-34=-24=-12

Page No 95:

Question 10:

A ladder 15 metres long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, find the height of the wall.

Answer:

Given, the height of the ladder = 15m
Let the height of the vertical wall = h 
The ladder makes an angle of 60o with the wall i.e. θ = 60o.



In QPR,cos60o=PRPQ=h1512=h15h=152h=7.5 m

Thus the required height of the wall is 7.5 meters.

Page No 95:

Question 11:

Simplify (1 + tan2θ

) (1 – sinθ

) (1 + sinθ

)

Answer:


1+tan2θ1-sinθ1+sinθ=1+tan2θ1-sin2θ                       a-ba+b=a2-b2=sec2θ×cos2θ                                   1+tan2θ=sec2θ and cos2θ+sin2θ=1=1cos2θ ×cos2θ                                secθ=1cosθ=1

Page No 95:

Question 12:

If 2sin2θ

– cos2θ

= 2, then find the value of θ

.

Answer:


2sin2θ-cos2θ=22sin2θ-1-sin2θ=2                                   cos2θ+sin2θ=12sin2θ-1+sin2θ=2  3sin2θ=3sin2θ=1sinθ=1sinθ=sin90oθ=90o

Hence, the value of θ

is 90°.

Page No 95:

Question 13:

Show that cos245°+θ+cos245°-θtan60°+θ tan30°-θ=1

Answer:

Given, 
LHS=cos245o+θ+cos245o-θtan60o+θ.tan30o-θ=cos245o+θ+sin90o-45o-θtan60o+θ.cot90o-30o-θ                              sin90o-θ=cosθ and cot90o-θ=tanθ=cos245o+θ+sin245o+θtan60o+θ.cot60o+θ                                           cos2θ+sin2θ=1=1tan60o+θ.1tan60o+θ                                         cotθ=1tanθ=1=RHS

Hence proved.

Page No 95:

Question 14:

An observer 1.5 metres tall is 20.5 metres away from a tower 22 metres high. Determine the angle of elevation of the top of the tower from the eye of the observer.

Answer:

Let the angle of elevation of the top of the tower from the eye of the observer be θ.



Given, AB = 22 m , PQ = MB = 1.5 m and QB = PM = 20.5 m
⇒ AM = AB - MB
⇒ AM = 22 - 1.5 = 20.5 m

Now in APM,
tanθ=AMPM=20.520.5=1tanθ=tan45oθ=45o

Hence, the required angle of elevation of the top of the tower from the eye of the observer is 45o.

Page No 95:

Question 15:

Show that tan4θ

+ tan2θ

= sec4θ

– sec2θ

.

Answer:


LHS= tan4θ+tan2θ=tan2θtan2θ+1=tan2θ.sec2θ                                          sec2θ=tan2θ+1=sec2θ-1.sec2θ                                tan2θ=sec2θ-1=sec4θ-sec2θ=RHS

Hence proved.



Page No 99:

Question 1:

If cosecθ

+ cotθ

= p, then prove that cosθ=p2-1p2+1.

Answer:


cosecθ+cotθ=p1sinθ+cosθsinθ=p                   cosecθ=1sinθ and cotθ=cosθsinθ1+cosθsinθ=p1+cosθ2sin2θ=p2                    Squaring both sides1+2cosθ+cos2θsin2θ=p2
Using componendo and dividendo rule,
1+2cosθ+cos2θ-sin2θ1+2cosθ+cos2θ+sin2θ=p2-1p2+11+2cosθ+cos2θ-1-cos2θ1+2cosθ+cos2θ+sin2θ=p2-1p2+12cosθ+2cos2θ2+2cosθ=p2-1p2+1                                   cos2θ+sin2θ=1cosθ+cos2θ1+cosθ=p2-1p2+1 cosθ1+cosθ1+cosθ=p2-1p2+1 cosθ=p2-1p2+1

Hence proved.

Page No 99:

Question 2:

Prove that sec2θ +cosec2θ=tanθ+cotθ

Answer:


LHS=sec2θ+cosec2θ=1cos2θ+1sin2θ           secθ=1cosθ and cosecθ=1sinθ=sin2θ+cos2θcos2θsin2θ=1cos2θsin2θ                   sin2θ+cos2θ=1=1cosθsinθ=sin2θcosθsinθ+cos2θcosθsinθ                 sin2θ+cos2θ=1=sinθcosθ+cosθsinθ =tanθ+cotθ=RHS

Hence proved.

Page No 99:

Question 3:

The angle of elevation of the top of a tower from certain point is 30°. If the observer moves 20 metres towards the tower, the angle of elevation of the top increases by 15°. Find the height of the tower.

Answer:

Let the height of the tower be h.
SR = x m, PSR = θ, QS = 20 m and PQR = 30o



Now in PSR,
tanθ=PRSR=hxtanθ=hxx=htanθ             .....1

Now in PQR,
tan30o=PRQR=PRQS+SRtan30o=h20+x13=h20+x20+x=h320+htanθ=h3                  .....2   From 1

After moving 20 m towards the tower the angle of elevation of the top increases by 15o.
i.e.  PSR = θ = PQR + 15o
θ=30°+15°=45° 20+htan45°=h3                             From 220+h1=h320=h3-hh3-1=20h=203-1h=203-1×3+13+1                            By rationalizationh=203+13-1h=203+12h=103+1m

Hence, the required height of the tower is 103+1 m.

Page No 99:

Question 4:

If 1 + sin2θ

= 3sinθ

cosθ, then prove that tanθ

= 1 or 12.

Answer:

Given,
1+sin2θ=3sinθcosθ1sin2θ+1=3cosθsinθ                                 Dividing both sides by sin2θcosec2θ+1=3cotθ 1+cot2θ+1=3cotθ                                cosec2θ-cot2θ=1cot2θ-3cotθ+2=0cot2θ-2cotθ-cotθ+2=0cotθcotθ-2-1cotθ-2=0cotθ-1cotθ-2=0cotθ=1 or 2tanθ=1 or 12                                              tanθ=1cotθ

Hence proved.

Page No 99:

Question 5:

Given that sinθ + 2cosθ

= 1, then prove that 2sinθ – cosθ

= 2.

Answer:

Given,
sinθ+2cosθ=1sinθ+2cosθ2=1                                         Squaring both sidessin2θ+4cos2θ+4sinθcosθ=1  1-cos2θ+41-sin2θ+4sinθcosθ=1      sin2θ+cos2θ=1-cos2θ-4sin2θ+4sinθcosθ=-4cos2θ+4sin2θ-4sinθcosθ=42sinθ-cosθ2=4                                     a2+b2-2ab=a-b22sinθ-cosθ=2

Hence proved.

Page No 99:

Question 6:

The angle of elevation of the top of a tower from two points distant s and t from its foot are complementary. Prove that the height of the tower is st.

Answer:

Let the height of the tower be h 
and ABC=θ
given that BC = s, PC = t
and angle of elevation on both positions is complementary.
i.e, ∠APC = 90°-θ



Now in ABC,tanθ=ACBC=hs                                        .....1and in APC,tan90o-θ=ACPC            tan90o-θ=cotθcotθ=ht1tanθ=ht                                              .....2On multiplying eq. 1 and 2, we gettanθ×1tanθ=hs×hth2st=1h2=sth=st

So, the required height of the tower is st.

Hence proved.

Page No 99:

Question 7:

The shadow of a tower standing on a level plane is found to be 50 m longer when Sun’s elevation is 30° than when it is 60°. Find the height of the tower.

Answer:

Let the height of the tower be h and RQ = x m.
Given, PR = 50 m
and SPQ=30°, SRQ=60°



In SRQ,tan60°=SQRQ3=hxx=h3and in SPQ,tan30°=SQPQ=SQPR+RQ=h50+x13=h50+x3h=50+x3h=50+h33-13h=503-13h=50h=5032h=253 m

Hence, the required height of tower is 253m.

Page No 99:

Question 8:

A vertical tower stands on a horizontal plane and is surmounted by a vertical flag staff of height h. At a point on the plane, the angles of elevation of the bottom and the top of the flag staff are α and β

, respectively. Prove that the height of the tower is h tan αtan β-tan α.

Answer:

Let the height of the tower be H and OR = x



Given that, height of flag staff = h = FP and ∠PRO = α, ∠FRO = β
In PRO,tanα=PORO=Hx x=Htanα                           .....1and in FRO,tanβ=FORO=FP+POROtanβ=h+Hxx=h+Htanβ                            .....2From 1 and 2,Htanα=h+HtanβHtanβ=h+HtanαHtanβ-Htanα=htanαHtanβ-tanα=htanαH=htanαtanβ-tanα

Hence proved.

Page No 99:

Question 9:

If tanθ

+ secθ

= l, then prove that secθ=l2+12l.

Answer:

Given,
tanθ+secθ=l                            .....1
Multiply by secθ-tanθ in the numerator and denominator, we get
tanθ+secθsecθ-tanθsecθ-tanθ =lsec2θ-tan2θsecθ-tanθ =l1secθ-tanθ =l                            sec2θ-tan2θ=1secθ-tanθ=1l                                .....2
Adding (1) and (2), we get
2secθ=l+1l  secθ=l2+12l

Hence proved.

Page No 99:

Question 10:

If sinθ

+ cosθ

= p and secθ

+ cosecθ

= q, then prove that q(p2 – 1) = 2p.

Answer:

Given,
sinθ+cosθ=p                           .....1and, secθ+cosecθ=q
1cosθ+1sinθ=q                     secθ=1cosθ and cosecθ=1sinθcosθ+sinθcosθsinθ=qpcosθsinθ=q                                          From 1cosθsinθ=pq                                  .....2cosθ+sinθ=pOn squaring both sides, we getcosθ+sinθ2=p2cos2θ+sin2θ+2sinθcosθ=p2                             a+b2=a2+b2+2ab1+2sinθcosθ=p2                                                  cos2θ+sin2θ=11+2pq=p2   q+2p=p2q 2p=p2q-qqp2-1=2p

Hence proved

Page No 99:

Question 11:

If a sinθ

+ b cosθ

= c, then prove that a cosθ

b sinθ

= a2+b2-c2.

Answer:

Given, asinθ+bcosθ=c

asinθ+bcosθ2=c2                                                     squaring both sidesa2sin2θ+b2cos2θ+2absinθcosθ=c2                 x+y2=x2+y2+2xya21-cos2θ+b21-sin2θ+2absinθcosθ=c2 a2-a2cos2θ+b2-b2sin2θ+2absinθcosθ=c2 a2+b2-c2=a2cos2θ+b2sin2θ-2absinθcosθa2+b2-c2=acosθ-bsinθ2                                 x2+y2-2xy=x-y2acosθ-bsinθ2=a2+b2-c2acosθ-bsinθ=a2+b2-c2

Hence proved.

Page No 99:

Question 12:

 Prove that 1+secθ-tanθ1+secθ+tanθ=1-sinθcosθ

Answer:


LHS=1+secθ-tanθ1+secθ+tanθ=1+1cosθ-sinθcosθ1+1cosθ+sinθcosθ                                     secθ=1cosθ and tanθ=sinθcosθ=cosθ+1-sinθcosθ+1+sinθ=cosθ+1-sinθcosθ+1+sinθ=2cos2θ2-2sinθ2cosθ22cos2θ2+2sinθ2cosθ2     cosθ+1=2cos2θ2 and sinθ=2sinθ2cosθ2=2cosθ2cosθ2-sinθ22cosθ2cosθ2+sinθ2 =cosθ2-sinθ2cosθ2+sinθ2×cosθ2-sinθ2cosθ2-sinθ2                                                    Rationalization=cosθ2-sinθ22cos2θ2-sin2θ2                                                                           a-b2=a2+b2-2ab and a-ba+b=a2-b2cos2θ2+sin2θ2-2cosθ2sinθ2cosθ                                                        cos2θ2-sin2θ2=cosθ=1-sinθcosθ=RHS

Hence proved.

Page No 99:

Question 13:

The angle of elevation of the top of a tower 30 m high from the foot of another tower in the same plane is 60° and the angle of elevation of the top of the second tower from the foot of the first tower is 30°. Find the distance between the two towers and also the height of the other tower.

Answer:

Let distance between the two towers = AB = x m
Height of the other tower = PA = h m
Given, height of the tower = QB = 30 m and ∠QAB = 60°, ∠PBA = 30°


In QAB,
tan60°=QBABtan60°=30x3=30xx=303×33x=3033=103m

And in PBA,
tan30°=PAAB=hx13=h103h=10 m

Thus the required distance and height is 103 m and 10 m respectively.



Page No 100:

Question 14:

From the top of a tower h m high, the angles of depression of two objects, which are in line with the foot of the tower are α and β

(β > α

). Find the distance between the two objects.

Answer:

Let the distance between two objects is x m and CD = y m.
Given,
∠BAX = α = ∠ABD,                               [alternate angle]
∠CAY = β = ∠ACD                                  [alternate angle]



In ACD,
tanβ=ADCD=hyy=htanβ                                      .....1and in ABD,tanα=ADBDtanα=ADBC+CDtanα=hx+yx+y=htanα                                .....2y=htanα-xFrom 1 and 2htanβ=htanα-x
x=htanα-htanβ=h1tanα-1tanβ=hcotα-cotβ

Thus, the distance between two objects is hcotα-cotβ.

Page No 100:

Question 15:

A ladder rests against a vertical wall at an inclination α

to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that pq=cosβ-cosαsinα-sinβ.

Answer:

Let OQ = x and OA = y.
Given, BQ = q, SA = p, and AB = SQ = Length of ladder
Also, ∠BAO = α and ∠QSO = β



In comma space increment B A O
cos alpha equals fraction numerator O A over denominator A B end fraction
rightwards double arrow cos alpha equals fraction numerator y over denominator A B end fraction
rightwards double arrow y equals A B cos alpha equals O A space space space space space space space space space space space space space space space space space space space space space space space space space space space space... open parentheses 1 close parentheses
and space space sin alpha equals fraction numerator O B over denominator A B end fraction
rightwards double arrow sin alpha equals fraction numerator O B over denominator A B end fraction
rightwards double arrow O B equals B A sin alpha space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... open parentheses 2 close parentheses

In comma space increment Q S O
cos beta equals fraction numerator O S over denominator S Q end fraction
rightwards double arrow O S equals S Q cos beta equals A B cos beta space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets A B equals S Q close square brackets space space space space space space space space space... open parentheses 3 close parentheses
and space space sin beta equals fraction numerator O Q over denominator S Q end fraction
rightwards double arrow O Q equals S Q sin beta equals A B sin beta space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets A B equals S Q close square brackets space space space space space space space space space... open parentheses 4 close parentheses

Now comma space S A equals O S minus A O
p equals A B cos beta minus A B cos alpha
p equals A B open parentheses cos beta minus cos alpha close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... open parentheses 5 close parentheses

and space B Q equals B O equals Q O
q equals B A sin alpha minus A B sin beta space
q equals A B open parentheses sin alpha minus sin beta close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... open parentheses 6 close parentheses

E q space open parentheses 5 close parentheses space d i v i d e d space b y space open parentheses 4 close parentheses comma space w e space g e t
p over q equals fraction numerator A B open parentheses cos beta minus cos alpha close parentheses over denominator A B open parentheses sin alpha minus sin beta close parentheses space end fraction equals fraction numerator open parentheses cos beta minus cos alpha close parentheses over denominator open parentheses sin alpha minus sin beta close parentheses space end fraction
p over q equals fraction numerator cos beta minus cos alpha over denominator sin alpha minus sin beta space end fraction space

Hence proved.

Page No 100:

Question 16:

The angle of elevation of the top of a vertical tower from a point on the ground is 60°. From another point 10 m vertically above the first, its angle of elevation is 45°. Find the height of the tower.

Answer:

Let the height of the vertical tower OT = H
and OP = AB = x m
Given, AP = 10 m, ∠TPO = 60° and ∠TAB = 45°

In increment TPO comma
tan60°=OTOP=Hx3=Hxx=H3                                       .....1In TAB,tan45°=TBAB=H-10x1=H-10xx=H-10H3=H-10                                             From 1H-H3=10H1-13=10
 H=1033-1×3+13+1                                        By rationalization=1033+13-1=1033+12=533+1=53+3 m

Hence, the required height of the tower is 53+3 m.

Page No 100:

Question 17:

A window of a house is h metres above the ground. From the window, the angles of elevation and depression of the top and the bottom of another house situated on the opposite side of the lane are found to be α

and β

, respectively. Prove that the height of the other house is h ( 1 + tan α

cot β ) metres.

Answer:

Let the height of the other house = OQ = H and OB = MW = m.
Given, height of first house = WB = h = MO
and QWM=α, OWM=β=WOB              alternate angle

In WOB,
tanβ=WBOB=hxx=htanβ                                             .....1In QWM,tanα=QMWM=OQ-MOWMtanα=H-hxx=H-htanα                                           .....2From 1 and 2htanβ=H-htanαhtanα=H-htanβhtanα=Htanβ-htanβHtanβ=htanα+tanβ
H=htanα+tanβtanβ=h1+tanαtanβ=h1+tanαcotβ

Hence proved.

Page No 100:

Question 18:

The lower window of a house is at a height of 2 m above the ground and its upper window is 4 m vertically above the lower window. At certain instant the angles of elevation of a balloon from these windows are observed to be 60° and 30°, respectively. Find the height of the balloon above the ground.

Answer:

Let the height of the balloon from above the ground = H.
and OP = W2R = W1Q = x
Given, the height of the lower window from above the ground  = W2P = 2 m = OR
Height of upper window from above the lower window = W1W2 = 4 m = QR


BQ=OB-QR+RO=H-4+2=H-6
andBW1Q=30°BW2R=60°In BW2R,tan60°=BRW2R=BQ+QRx3=H-6+4xx=H-23                                 .....1In BW1Q,tan30°=BQW1Q13=H-6x x=3H-6                          .....2From 1 and 23H-6=H-233H-6=H-23H-18=H-2 2H=16H=8

Hence, the required height of the balloon above the ground is 8 m.



View NCERT Solutions for all chapters of Class 10