Rd Sharma XII Vol 2 2021 Solutions for Class 12 Commerce Maths Chapter 1 Definite Integrals are provided here with simple step-by-step explanations. These solutions for Definite Integrals are extremely popular among Class 12 Commerce students for Maths Definite Integrals Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Rd Sharma XII Vol 2 2021 Book of Class 12 Commerce Maths Chapter 1 are provided here for you for free. You will also love the ad-free experience on Meritnationâ€™s Rd Sharma XII Vol 2 2021 Solutions. All Rd Sharma XII Vol 2 2021 Solutions for class Class 12 Commerce Maths are prepared by experts and are 100% accurate.

#### Question 33:

Evaluate the following integrals as limit of sums:

${\int }_{1}^{3}\left(3{x}^{2}+1\right)dx$                    [CBSE 2014]

We have,

Here, a = 1, b = 3,  f(x) = 3x2 + 1 and $h=\frac{3-1}{n}=\frac{2}{n}⇒nh=2$

$=\underset{h\to 0}{\mathrm{lim}}\left[4nh+6×\frac{nh\left(nh-h\right)}{2}+3×\frac{\left(nh-h\right)nh\left(2nh-h\right)}{6}\right]\phantom{\rule{0ex}{0ex}}=\underset{h\to 0}{\mathrm{lim}}\left[4nh+3×nh\left(nh-h\right)+3×\frac{\left(nh-h\right)nh\left(2nh-h\right)}{6}\right]\phantom{\rule{0ex}{0ex}}=\underset{h\to 0}{\mathrm{lim}}\left[4×2+3×2×\left(2-h\right)+3×\frac{\left(2-h\right)×2×\left(2×2-h\right)}{6}\right]\phantom{\rule{0ex}{0ex}}=8+6×\left(2-0\right)+\frac{\left(2-0\right)×2×\left(4-0\right)}{2}\phantom{\rule{0ex}{0ex}}=8+12+8\phantom{\rule{0ex}{0ex}}=28$

#### Question 34:

$\underset{1}{\overset{3}{\int }}\left({x}^{2}+3x+{e}^{x}\right)dx$

#### Question 15:

I =

using partial fraction,

putting the values of A,B and C we get

#### Question 17:

${\int }_{0}^{1}\sqrt{\frac{1-x}{1+x}}dx\phantom{\rule{0ex}{0ex}}={\int }_{0}^{1}\sqrt{\frac{1-x}{1+x}×\frac{1-x}{1-x}}dx\phantom{\rule{0ex}{0ex}}={\int }_{0}^{1}\frac{1-x}{\sqrt{1-{x}^{2}}}dx\phantom{\rule{0ex}{0ex}}={\int }_{0}^{1}\frac{1}{\sqrt{1-{x}^{2}}}dx-{\int }_{0}^{1}\frac{x}{\sqrt{1-{x}^{2}}}dx\phantom{\rule{0ex}{0ex}}={\left[{\mathrm{sin}}^{-1}x\right]}_{0}^{1}+{\left[\sqrt{1-{x}^{2}}\right]}_{0}^{1}\phantom{\rule{0ex}{0ex}}=\frac{\mathrm{\pi }}{2}-1$

#### Question 20:

${\int }_{\frac{\mathrm{\pi }}{3}}^{\frac{\mathrm{\pi }}{2}}\frac{\sqrt{1+\mathrm{cos}x}}{{\left(1-\mathrm{cos}x\right)}^{\frac{5}{2}}}dx\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}={\int }_{\frac{\mathrm{\pi }}{3}}^{\frac{\mathrm{\pi }}{2}}\frac{\sqrt{1+\mathrm{cos}x}}{{\left(1-\mathrm{cos}x\right)}^{\frac{5}{2}}}×\frac{\sqrt{1-\mathrm{cos}x}}{\sqrt{1-\mathrm{cos}x}}dx\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}={\int }_{\frac{\mathrm{\pi }}{3}}^{\frac{\mathrm{\pi }}{2}}\frac{\mathrm{sin}x}{{\left(1-\mathrm{cos}x\right)}^{3}}dx\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}=-\frac{1}{2}{\left[{\left(1-\mathrm{cos}x\right)}^{-2}\right]}_{\frac{\mathrm{\pi }}{3}}^{\frac{\mathrm{\pi }}{2}}\phantom{\rule{0ex}{0ex}}=-\frac{1}{2}\left[1-4\right]\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}=\frac{3}{2}$

#### Question 23:

Evaluate the following integrals:

${\int }_{2}^{4}\frac{{x}^{2}+x}{\sqrt{2x+1}}dx$

Let I = ${\int }_{2}^{4}\frac{{x}^{2}+x}{\sqrt{2x+1}}dx$

Put 2x + 1 = z2

$⇒2dx=2zdz\phantom{\rule{0ex}{0ex}}⇒dx=zdz$

When

When

$\therefore I={\int }_{\sqrt{5}}^{3}\frac{{\left(\frac{{z}^{2}-1}{2}\right)}^{2}+\frac{{z}^{2}-1}{2}}{z}×zdz\phantom{\rule{0ex}{0ex}}⇒I={\int }_{\sqrt{5}}^{3}\frac{{z}^{4}-2{z}^{2}+1+2{z}^{2}-2}{4}dz\phantom{\rule{0ex}{0ex}}⇒I=\frac{1}{4}{\int }_{\sqrt{5}}^{3}\left({z}^{4}-1\right)dz\phantom{\rule{0ex}{0ex}}⇒I=\frac{1}{4}×{\overline{)\left(\frac{{z}^{5}}{5}-z\right)}}_{\sqrt{5}}^{3}$
$⇒I=\frac{1}{4}\left[\left(\frac{243}{5}-3\right)-\left(\frac{25\sqrt{5}}{5}-\sqrt{5}\right)\right]\phantom{\rule{0ex}{0ex}}⇒I=\frac{1}{4}×\frac{228}{5}-\frac{1}{4}×4\sqrt{5}\phantom{\rule{0ex}{0ex}}⇒I=\frac{57}{5}-\sqrt{5}$

ode is 4430.

#### Question 61:

${\int }_{0}^{4}xdx\phantom{\rule{0ex}{0ex}}={\left[\frac{{x}^{2}}{2}\right]}_{0}^{4}\phantom{\rule{0ex}{0ex}}=8-0\phantom{\rule{0ex}{0ex}}=8$

#### Question 62:

${\int }_{0}^{2}\left(2{x}^{2}+3\right)dx\phantom{\rule{0ex}{0ex}}={\left[\frac{2{x}^{3}}{3}+3x\right]}_{0}^{2}\phantom{\rule{0ex}{0ex}}=\frac{16}{3}+6=\frac{34}{3}$

#### Question 1:

equals

(a) π/2
(b) π/4
(c) π/6
(d) π/8

(d) $\mathrm{\pi }$/8

equals

(a) 0
(b) 1/2
(c) 2
(d) 3/2

(c) 2

#### Question 3:

The value of is
(a) $\frac{{\mathrm{\pi }}^{2}}{4}$

(b) $\frac{{\mathrm{\pi }}^{2}}{2}$

(c) $\frac{3{\mathrm{\pi }}^{2}}{2}$

(d) $\frac{{\mathrm{\pi }}^{2}}{3}$

π24

#### Question 4:

The value of $\underset{0}{\overset{2\mathrm{\pi }}{\int }}\sqrt{1+\mathrm{sin}\frac{x}{2}}dx$ is
(a) 0
(b) 2
(c) 8
(d) 4

(c) 8

#### Question 5:

The value of the integral is
(a) 0
(b) π/2
(c) π/4
(d) none of these

(c) π/4

#### Question 6:

equals

(a) log 2 − 1
(b) log 2
(c) log 4 − 1
(d) − log 2

(b) log 2

$=\frac{1}{2×\frac{1}{2}}{\left[\mathrm{log}\left|\frac{t+\frac{1}{2}-\frac{1}{2}}{t+\frac{1}{2}+\frac{1}{2}}\right|\right]}_{1}^{\infty }\phantom{\rule{0ex}{0ex}}={\left[\mathrm{log}\left|\frac{t}{t+1}\right|\right]}_{1}^{\infty }\phantom{\rule{0ex}{0ex}}={\left[\mathrm{log}\left|\frac{\frac{t}{t}}{\frac{t}{t}+\frac{1}{t}}\right|\right]}_{1}^{\infty }\phantom{\rule{0ex}{0ex}}={\left[\mathrm{log}\left|\frac{1}{1+\frac{1}{t}}\right|\right]}_{1}^{\infty }\phantom{\rule{0ex}{0ex}}=\mathrm{log}\frac{1}{1+0}-\mathrm{log}\frac{1}{1+1}\phantom{\rule{0ex}{0ex}}=\mathrm{log}\left(1\right)-\mathrm{log}\left(\frac{1}{2}\right)\phantom{\rule{0ex}{0ex}}=0-\left(-\mathrm{log}2\right)\phantom{\rule{0ex}{0ex}}=\mathrm{log}2$

equals
(a) 2
(b) 1
(c) π/4
(d) π2/8

(a) 2

#### Question 8:

equals

(a) $\mathrm{log}\left(\frac{2}{3}\right)$

(b) $\mathrm{log}\left(\frac{3}{2}\right)$

(c) $\mathrm{log}\left(\frac{3}{4}\right)$

(d) $\mathrm{log}\left(\frac{4}{3}\right)$

(d) $\mathrm{log}\left(\frac{4}{3}\right)$

#### Question 9:

equals

(a) $\frac{1}{3}{\mathrm{tan}}^{-1}\left(\frac{1}{\sqrt{3}}\right)$

(b) $\frac{2}{\sqrt{3}}{\mathrm{tan}}^{-1}\left(\frac{1}{\sqrt{3}}\right)$

(c)

(d)

3tan1(13)

#### Question 10:

$\underset{0}{\overset{\mathrm{\pi }}{\int }}\sqrt{\frac{1-x}{1+x}}dx=$

(a) $\frac{\mathrm{\pi }}{2}$

(b) $\frac{\mathrm{\pi }}{2}-1$

(c) $\frac{\mathrm{\pi }}{2}+1$

(d) π + 1

Disclaimer: None of the given option is correct.

#### Question 11:

(a) $\frac{\mathrm{\pi }}{\sqrt{{a}^{2}-{b}^{2}}}$

(b) $\frac{\mathrm{\pi }}{ab}$

(c) $\frac{\mathrm{\pi }}{{a}^{2}+{b}^{2}}$

(d) (a + b) π

$={\int }_{0}^{\mathrm{\pi }}\frac{1+{\mathrm{tan}}^{2}\frac{x}{2}}{a\left(1+{\mathrm{tan}}^{2}\frac{x}{2}\right)+b\left(1-{\mathrm{tan}}^{2}\frac{x}{2}\right)}\mathit{d}x\phantom{\rule{0ex}{0ex}}={\int }_{0}^{\mathrm{\pi }}\frac{1+{\mathrm{tan}}^{2}\frac{x}{2}}{\left(a+b\right)+\left(a-b\right){\mathrm{tan}}^{2}\frac{x}{2}}dx\phantom{\rule{0ex}{0ex}}={\int }_{0}^{\mathrm{\pi }}\frac{{\mathrm{sec}}^{2}\frac{x}{2}}{\left(a+b\right)+\left(a-b\right){\mathrm{tan}}^{2}\frac{x}{2}}dx$

$=\frac{2}{\left(a-b\right)}{\int }_{0}^{\infty }\frac{1}{{\left(\sqrt{\frac{a+b}{a-b}}\right)}^{2}+{t}^{2}}dt\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}=\frac{2}{\left(a-b\right)}×\sqrt{\frac{a-b}{a+b}}{\left[{\mathrm{tan}}^{-1}\frac{t}{\sqrt{\frac{a+b}{a-b}}}\right]}_{0}^{\infty }\phantom{\rule{0ex}{0ex}}=\frac{2}{\sqrt{{a}^{2}-{b}^{2}}}\left[\frac{\mathrm{\pi }}{2}-0\right]\phantom{\rule{0ex}{0ex}}=\frac{2}{\sqrt{{a}^{2}-{b}^{2}}}\left[\frac{\mathrm{\pi }}{2}\right]\phantom{\rule{0ex}{0ex}}=\frac{\mathrm{\pi }}{\sqrt{{a}^{2}-{b}^{2}}}$

is

(a) π/3
(b) π/6
(c) π/12
(d) π/2

#### Question 13:

Given that the value of $\underset{0}{\overset{\infty }{\int }}\frac{dx}{\left({x}^{2}+4\right)\left({x}^{2}+9\right)},$ is

(a) $\frac{\mathrm{\pi }}{60}$

(b) $\frac{\mathrm{\pi }}{20}$

(c) $\frac{\mathrm{\pi }}{40}$

(d) $\frac{\mathrm{\pi }}{80}$

#### Question 14:

(a) $\frac{1}{2}$          (b) $\frac{{e}^{2}}{2}$          (c) 1          (d) $\infty$

Hence, the correct answer is option (a).

#### Question 15:

is equal to

(a) $\frac{\mathrm{\pi }}{12}$

(b) $\frac{\mathrm{\pi }}{6}$

(c) $\frac{\mathrm{\pi }}{4}$

(d) $\frac{\mathrm{\pi }}{3}$

(a) $\frac{\mathrm{\pi }}{12}$

${\int }_{1}^{\sqrt{3}}\frac{1}{1+{x}^{2}}dx\phantom{\rule{0ex}{0ex}}={\left[{\mathrm{tan}}^{-1}x\right]}_{1}^{\sqrt{3}}\phantom{\rule{0ex}{0ex}}=\frac{\mathrm{\pi }}{3}-\frac{\mathrm{\pi }}{4}\phantom{\rule{0ex}{0ex}}=\frac{\mathrm{\pi }}{12}$
30.

#### Question 16:

(a) $\frac{\mathrm{\pi }}{12}+\mathrm{log}\left(2\sqrt{2}\right)$

(b) $\frac{\mathrm{\pi }}{2}+\mathrm{log}\left(2\sqrt{2}\right)$

(c) $\frac{\mathrm{\pi }}{6}+\mathrm{log}\left(2\sqrt{2}\right)$

(d) $\frac{\mathrm{\pi }}{3}+\mathrm{log}\left(2\sqrt{2}\right)$

#### Question 17:

The value of the integral is

(a) $\frac{\mathrm{\pi }}{2}$

(b) $\frac{\mathrm{\pi }}{4}$

(c) $\frac{\mathrm{\pi }}{6}$

(d) $\frac{\mathrm{\pi }}{3}$

is equal to

(a) 1
(b) 2
(c) − 1
(d) − 2

(b) 2

is equal to

(a)

(b)

(c)

(d) π

(a)

The value of is
(a) 1
(b) e − 1
(c) 0
(d) − 1

(b) e − 1

#### Question 21:

If then a equals

(a) $\frac{\mathrm{\pi }}{2}$

(b) $\frac{1}{2}$

(c) $\frac{\mathrm{\pi }}{4}$

(d) 1

(b) $\frac{1}{2}$

4430.

#### Question 22:

If equals

(a) 4a2
(b) 0
(c) 2a2
(d) none of these

(b) 0

#### Question 23:

The value of is

(a) $\frac{{\mathrm{\pi }}^{4}}{2}$

(b) $\frac{{\mathrm{\pi }}^{4}}{4}$

(c) 0

(d) none of these

(c) 0

#### Question 24:

is equal to

(a) loge 3

(b) ${\mathrm{log}}_{e}\sqrt{3}$

(c) $\frac{1}{2}\mathrm{log}\left(-1\right)$

(d) log (−1)

(b) ${\mathrm{log}}_{e}\sqrt{3}$

is equal to

(a) −2
(b) 2
(c) 0
(d) 4

(b) 2

#### Question 26:

The derivative of is

(a)

(b)

(c) (ln x)−1 x (x − 1)

(d)

(c) (ln x)−1 x (x − 1)

Using Newton Leibnitz formula

$\begin{array}{c}{f}^{\text{'}}\left(x\right)=\frac{1}{{\mathrm{log}}_{e}{x}^{3}}\left(3{x}^{2}\right)-\frac{1}{{\mathrm{log}}_{e}{x}^{2}}\left(2x\right)\\ =\frac{3{x}^{2}}{3\mathrm{ln}x}-\frac{2x}{2\mathrm{ln}x}\\ =\frac{{x}^{2}}{\mathrm{ln}x}-\frac{x}{\mathrm{ln}x}\\ =\frac{1}{\mathrm{ln}x}x\left(x-1\right)\\ ={\left(\mathrm{ln}x\right)}^{-1}x\left(x-1\right)\end{array}$

#### Question 27:

If then the value of I10 + 90I8 is

(a) $9{\left(\frac{\mathrm{\pi }}{2}\right)}^{9}$

(b) $10{\left(\frac{\mathrm{\pi }}{2}\right)}^{9}$

(c) ${\left(\frac{\mathrm{\pi }}{2}\right)}^{9}$

(d) $9{\left(\frac{\mathrm{\pi }}{2}\right)}^{8}$

#### Question 28:

(a) $\frac{15}{16}$

(b) $\frac{3}{16}$

(c) $-\frac{3}{16}$

(d) $-\frac{16}{3}$

Disclaimer: The question given is not correct because the function provided does not converge in the given domain.

#### Question 29:

is equal to

(a) $2\sqrt{2}$

(b) $2\left(\sqrt{2}+1\right)$

(c) 2

(b) $2\left(\sqrt{2}-1\right)$

Hence, the correct option is (d).

#### Question 30:

The value of the integral is
(a) 4
(b) 2
(c) −2
(d) 0

(a) 4

is equal to

(a) 0
(b) 1
(c) π/2
(d) π/4

(d) π/4

equals to

(a) π
(b) π/2
(c) π/3
(d) π/4

(d) π/4

is equal to

(a) 0
(b) π
(c) π/2
(d) π/4

(c) π/2

is equal to

(a) π/4
(b) π/2
(c) π
(d) 1

(d) 1

is equal to

(a) π
(b) π/2
(c) 0
(d) 2π

(c) 0

The value of is

(a) π/4
(b) π/8
(c) π/2
(d) 0

(a) π/4

#### Question 37:

(a) π ln 2
(b) −π ln 2
(c) 0
(d)

(a) π ln 2

Substitute x = tan θ
dx = sec2 θ dθ.
when,
x = 0  ⇒ θ = 0

Let us consider,

is equal to

(a)

(b) 0

(c)

(d)

#### Question 39:

If f (a + bx) = f (x), then $\underset{a}{\overset{b}{\int }}$ x f (x) dx is equal to

(a)

(b)

(c)

(d)

(d)

The value of is

(a) 1
(b) 0
(c) −1
(d) π/4

(b) 0

#### Question 41:

The value of is

(a) 2

(b) $\frac{3}{4}$

(c) 0

(d) −2

(c) 0

#### Question 42:

The value of is

(a) 0
(b) 2
(c) π
(d) 1

(c) $\mathrm{\pi }$

#### Question 43:

is equal to

(a) 1

(b) 2

(c) 3

(d) 4

â€‹
Hence, the correct option is (a).

#### Question 44:

is equal to

(a)

(b)

(c)

(d)

â€‹
Hence, the correct option is (b).

#### Question 45:

If f and g are continuous functions in [0, 1] satisfying f(x) = f(ax) and g(x) = g(ax) = a, then is equal to

(a) $\frac{a}{2}$

(b)

(c)

(d)

Given: f(x) = f(a – x) and g(x) + g(a – x) = a

â€‹
Hence, the correct option is (b).

#### Question 46:

(a) 2
(b) 0
(c) $-$1
(d) 1

Given:
Put ${\mathrm{sin}}^{-1}x=t$

Now, At

Hence, the correct answer is option D.

#### Question 1:

If $\underset{0}{\overset{a}{\int }}\frac{1}{1+4{x}^{2}}dx=\frac{\mathrm{\pi }}{8},$ then a = _______________.

â€‹
Hence, a = $\overline{)\frac{1}{2}}$.

#### Question 2:

The value of is _______________.

â€‹
Hence, the value of  is 0.

#### Question 3:

The value of is _______________.

â€‹
Hence, the value of

#### Question 4:

$\underset{0}{\overset{a}{\int }}\frac{x}{\sqrt{{a}^{2}+{x}^{2}}}dx=$ _______________.

â€‹
Hence, $\underset{0}{\overset{a}{\int }}\frac{x}{\sqrt{{a}^{2}+{x}^{2}}}dx=\overline{)a\left(\sqrt{2}-1\right)}.$

#### Question 5:

The value of the integral is _______________.

â€‹
Hence, the value of the integral $\underset{\frac{1}{\mathrm{\pi }}}{\overset{\frac{2}{\mathrm{\pi }}}{\int }}\frac{\mathrm{sin}\left(\frac{1}{x}\right)}{{x}^{2}}dx$ is 1.

#### Question 6:

The value of the integral is _______________.

â€‹
Hence, the value of the integral

#### Question 7:

The value of the integral $\underset{1}{\overset{2}{\int }}{e}^{x}\left(\frac{1}{x}-\frac{1}{{x}^{2}}\right)dx$ is _______________.

â€‹
Hence, the value of the integral $\underset{1}{\overset{2}{\int }}{e}^{x}\left(\frac{1}{x}-\frac{1}{{x}^{2}}\right)dx$ is $\overline{)\frac{e\left(e-2\right)}{2}}.$

#### Question 8:

________________.

â€‹
Hence, .

#### Question 9:

The value of the integral where a, b, c, d are constants, depends only on ________________.

â€‹Hence, the value of the integral  where abcd are constants, depends only on d.

#### Question 10:

________________.

â€‹Hence, 2.

#### Question 11:

________________.

â€‹Hence,

#### Question 12:

________________.

â€‹Hence,

#### Question 13:

The value of is ________________.

â€‹Hence, the value of $\underset{0}{\overset{\frac{\mathrm{\pi }}{4}}{\int }}\frac{1+\mathrm{tan}x}{1-\mathrm{tan}x}dx$ is

#### Question 14:

The value of $\underset{0}{\overset{2}{\int }}\frac{{3}^{\sqrt{x}}}{\sqrt{x}}dx$ is ________________.

â€‹Hence, the value of $\underset{0}{\overset{2}{\int }}\frac{{3}^{\sqrt{x}}}{\sqrt{x}}dx$ is $\overline{)2\left[\frac{{3}^{\sqrt{2}}-1}{\mathrm{log}3}\right]}$.

#### Question 15:

The value of is ________________.

â€‹Hence, the value of $\underset{0}{\overset{\frac{\mathrm{\pi }}{2}}{\int }}\frac{\mathrm{sin}x}{1+{\mathrm{cos}}^{2}x}dx$ is $\overline{)\frac{\mathrm{\pi }}{4}}$.

#### Question 16:

If f(ax) = x and $\underset{0}{\overset{a}{\int }}f\left(x\right)dx=k\underset{0}{\overset{\frac{a}{2}}{\int }}f\left(x\right)dx,$ then k = _____________.

$\underset{0}{\overset{a}{\int }}f\left(x\right)dx=k\underset{0}{\overset{\frac{a}{2}}{\int }}f\left(x\right)dx$

Given:
f(x) = f(a – x)                ...(1)
$\underset{0}{\overset{a}{\int }}f\left(x\right)dx=k\underset{0}{\overset{\frac{a}{2}}{\int }}f\left(x\right)dx$        ...(2)

â€‹

â€‹Hence, k = 2.

#### Question 17:

The value of the integral is ________________.

â€‹

â€‹Hence, the value of the integral  is 0.

#### Question 18:

The value of the integral is ________________.

â€‹

â€‹Hence, the value of the integral  is 0.

#### Question 19:

The value of the integral is ________________.

â€‹

â€‹Hence, the value of the integral  is 0.

#### Question 20:

The value of the integral is ________________.

â€‹

â€‹Hence, the value of the integral  is 2.

#### Question 21:

The value of the integral is ________________.

â€‹

â€‹Hence, the value of the integral  is $\overline{)\frac{\mathrm{\pi }}{4}}$.

#### Question 22:

If then k = ________________.

â€‹

â€‹Hence, k = a.

#### Question 23:

If f(x) = f(ax) and then k = ________________.

Given:
f(x) = f(a – x)                ...(1)
...(2)

â€‹

â€‹Hence, k = $\overline{)\frac{a}{2}}$.

#### Question 24:

The value of the integral is ________________.

â€‹

â€‹Hence, the value of the integral  is 5.

#### Question 25:

________________.

â€‹

â€‹Hence,

4430.

#### Question 8:

.

${\int }_{0}^{1}\frac{1}{1+{x}^{2}}dx\phantom{\rule{0ex}{0ex}}={\left[{\mathrm{tan}}^{-1}x\right]}_{0}^{1}\phantom{\rule{0ex}{0ex}}=\frac{\mathrm{\pi }}{4}-0\phantom{\rule{0ex}{0ex}}=\frac{\mathrm{\pi }}{4}$ode is 4430.

#### Question 10:

${\int }_{0}^{\infty }{e}^{-x}dx\phantom{\rule{0ex}{0ex}}=-{\left[{e}^{-x}\right]}_{0}^{\infty }\phantom{\rule{0ex}{0ex}}=-\left(0-1\right)\phantom{\rule{0ex}{0ex}}=0+1\phantom{\rule{0ex}{0ex}}=1$ 4430.

#### Question 11:

${\int }_{0}^{4}\frac{1}{\sqrt{16-{x}^{2}}}dx\phantom{\rule{0ex}{0ex}}={\int }_{0}^{4}\frac{1}{\sqrt{{4}^{2}-{x}^{2}}}dx\phantom{\rule{0ex}{0ex}}={\left[{\mathrm{sin}}^{-1}\frac{x}{4}\right]}_{0}^{4}\phantom{\rule{0ex}{0ex}}=\left(\frac{\mathrm{\pi }}{2}-0\right)\phantom{\rule{0ex}{0ex}}=\frac{\mathrm{\pi }}{2}$s 4430.

#### Question 21:

${\int }_{0}^{1}\frac{1}{1+{x}^{2}}dx\phantom{\rule{0ex}{0ex}}={\left[{\mathrm{tan}}^{-1}x\right]}_{0}^{1}\phantom{\rule{0ex}{0ex}}={\mathrm{tan}}^{-1}1-{\mathrm{tan}}^{-1}0\phantom{\rule{0ex}{0ex}}=\frac{\mathrm{\pi }}{4}-0\phantom{\rule{0ex}{0ex}}=\frac{\mathrm{\pi }}{4}$

#### Question 22:

Evaluate each of the following integrals:

${\int }_{0}^{\frac{\mathrm{\pi }}{4}}\mathrm{tan}xdx$

${\int }_{0}^{\frac{\mathrm{\pi }}{4}}\mathrm{tan}xdx\phantom{\rule{0ex}{0ex}}={\overline{)\mathrm{logsec}x}}_{0}^{\frac{\mathrm{\pi }}{4}}\phantom{\rule{0ex}{0ex}}=\mathrm{logsec}\frac{\mathrm{\pi }}{4}-\mathrm{logsec}0\phantom{\rule{0ex}{0ex}}=\mathrm{log}\sqrt{2}-\mathrm{log}1\phantom{\rule{0ex}{0ex}}=\mathrm{log}{2}^{\frac{1}{2}}-0\phantom{\rule{0ex}{0ex}}=\frac{1}{2}\mathrm{log}2$

#### Question 23:

$\underset{2}{\overset{3}{\int }}\frac{1}{x}dx$

${\int }_{2}^{3}\frac{1}{x}dx\phantom{\rule{0ex}{0ex}}={\left[{\mathrm{log}}_{e}x\right]}_{2}^{3}\phantom{\rule{0ex}{0ex}}={\mathrm{log}}_{e}3-{\mathrm{log}}_{e}2\phantom{\rule{0ex}{0ex}}={\mathrm{log}}_{e}\left(\frac{3}{2}\right)$

#### Question 24:

${\int }_{0}^{2}\sqrt{4-{x}^{2}}dx\phantom{\rule{0ex}{0ex}}={\int }_{0}^{2}\sqrt{{2}^{2}-{x}^{2}}dx\phantom{\rule{0ex}{0ex}}={\left[\frac{x}{2}\sqrt{4-{x}^{2}}+\frac{1}{2}×{2}^{2}{\mathrm{sin}}^{-1}\frac{x}{2}\right]}_{0}^{2}\phantom{\rule{0ex}{0ex}}={\left[\frac{x}{2}\sqrt{4-{x}^{2}}\right]}_{0}^{2}+2{\left[{\mathrm{sin}}^{-1}\frac{x}{2}\right]}_{0}^{2}\phantom{\rule{0ex}{0ex}}=0+2\left(\frac{\mathrm{\pi }}{2}-0\right)\phantom{\rule{0ex}{0ex}}=\mathrm{\pi }$

4430.

#### Question 26:

Evaluate each of the following  integrals:

${\int }_{0}^{1}x{e}^{{x}^{2}}dx$                 [CBSE 2014]

$I={\int }_{0}^{1}x{e}^{{x}^{2}}dx\phantom{\rule{0ex}{0ex}}=\frac{1}{2}{\int }_{0}^{1}{e}^{{x}^{2}}2xdx$

Put ${x}^{2}=z$

$⇒2xdx=dz$

When

When

$\therefore I=\frac{1}{2}{\int }_{0}^{1}{e}^{z}dz\phantom{\rule{0ex}{0ex}}=\frac{1}{2}×{\overline{){e}^{z}}}_{0}^{1}\phantom{\rule{0ex}{0ex}}=\frac{1}{2}\left(e-{e}^{0}\right)\phantom{\rule{0ex}{0ex}}=\frac{1}{2}\left(e-1\right)$

#### Question 27:

Evaluate each of the following integrals:

${\int }_{0}^{\frac{\mathrm{\pi }}{4}}\mathrm{sin}2xdx$              [CBSE 2014]

${\int }_{0}^{\frac{\mathrm{\pi }}{4}}\mathrm{sin}2xdx\phantom{\rule{0ex}{0ex}}={\overline{)\frac{-\mathrm{cos}2x}{2}}}_{0}^{\frac{\mathrm{\pi }}{4}}\phantom{\rule{0ex}{0ex}}=-\frac{1}{2}\left(\mathrm{cos}\frac{\mathrm{\pi }}{2}-\mathrm{cos}0\right)\phantom{\rule{0ex}{0ex}}=-\frac{1}{2}×\left(0-1\right)\phantom{\rule{0ex}{0ex}}=\frac{1}{2}$

#### Question 28:

Evaluate each of the following integrals:

${\int }_{e}^{{e}^{2}}\frac{1}{x\mathrm{log}x}dx$               [CBSE 2014]

#### Question 29:

Evaluate each of the following integrals:

${\int }_{0}^{\frac{\mathrm{\pi }}{2}}{e}^{x}\left(\mathrm{sin}x-\mathrm{cos}x\right)dx$                 [CBSE 2014]

Disclaimer: The solution has been provided by taking the lower limit of integral as 0.

#### Question 30:

Solve each of the following integrals:

${\int }_{2}^{4}\frac{x}{{x}^{2}+1}dx$                 [CBSE 2014]

#### Question 31:

If find the value of k.

.

#### Question 32:

If write the value of a.

0.

#### Question 33:

If $f\left(x\right)={\int }_{0}^{x}t\mathrm{sin}tdt$, the write the value of $f\text{'}\left(x\right)$.                       [CBSE 2014]

$f\left(x\right)={\int }_{0}^{x}t\mathrm{sin}tdt\phantom{\rule{0ex}{0ex}}⇒f\left(x\right)={\overline{)t\left(-\mathrm{cos}t\right)}}_{0}^{x}-{\int }_{0}^{x}\frac{d}{dt}\left(t\right)×\left(-\mathrm{cos}t\right)dt\phantom{\rule{0ex}{0ex}}⇒f\left(x\right)=-\left(x\mathrm{cos}x-0\right)+{\int }_{0}^{x}\mathrm{cos}tdt\phantom{\rule{0ex}{0ex}}⇒f\left(x\right)=-x\mathrm{cos}x+{\overline{)\mathrm{sin}t}}_{0}^{x}$
$⇒f\left(x\right)=-x\mathrm{cos}x+\left(\mathrm{sin}x-0\right)\phantom{\rule{0ex}{0ex}}⇒f\left(x\right)=-x\mathrm{cos}x+\mathrm{sin}x$

Differentiating both sides with respect to x, we get

$f\text{'}\left(x\right)=-\left[x×\left(-\mathrm{sin}x\right)+\mathrm{cos}x×1\right]+\mathrm{cos}x\phantom{\rule{0ex}{0ex}}⇒f\text{'}\left(x\right)=-\left(-x\mathrm{sin}x\right)-\mathrm{cos}x+\mathrm{cos}x\phantom{\rule{0ex}{0ex}}⇒f\text{'}\left(x\right)=x\mathrm{sin}x$

Thus, the value of $f\text{'}\left(x\right)$ is x sinx.

#### Question 34:

If ${\int }_{0}^{a}\frac{1}{4+{x}^{2}}dx=\frac{\mathrm{\pi }}{8}$, find the value of a.                                   [CBSE 2014]

$⇒{\mathrm{tan}}^{-1}\frac{a}{2}=\frac{\mathrm{\pi }}{4}\phantom{\rule{0ex}{0ex}}⇒\frac{a}{2}=\mathrm{tan}\frac{\mathrm{\pi }}{4}=1\phantom{\rule{0ex}{0ex}}⇒a=2$

Thus, the value of a is 2.

#### Question 35:

Write the coefficient a, b, c of which the value of the integral is independent.

Hence, the given integral is independent of b

#### Question 36:

Evaluate :

$=\frac{1}{\mathrm{log}3}\left({3}^{3}-{3}^{2}\right)+C\phantom{\rule{0ex}{0ex}}=\frac{1}{\mathrm{log}3}\left(27-9\right)+C\phantom{\rule{0ex}{0ex}}=\frac{1}{\mathrm{log}3}\left(18\right)+C$

#### Question 39:

where {x} denotes the fractional part of x.

s 4430.

#### Question 45:

If  denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals: