RS Aggarwal 2021 2022 Solutions for Class 9 Maths Chapter 11 Areas Of Parallelograms And Triangles are provided here with simple step-by-step explanations. These solutions for Areas Of Parallelograms And Triangles are extremely popular among class 9 students for Maths Areas Of Parallelograms And Triangles Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the RS Aggarwal 2021 2022 Book of class 9 Maths Chapter 11 are provided here for you for free. You will also love the ad-free experience on Meritnation’s RS Aggarwal 2021 2022 Solutions. All RS Aggarwal 2021 2022 Solutions for class 9 Maths are prepared by experts and are 100% accurate.

Page No 387:

Question 1:

Answer:

(i) No, it doesnt lie on the same base and between the same parallels.
(ii) No, it doesnt lie on the same base and between the same parallels.
(iii) Yes, it lies on the same base and between the same parallels. The same base is AB and the parallels are AB and DE.
(iv) No, it doesnt lie on the same base and between the same parallels.
(v) Yes, it lies on the same base and between the same parallels. The same base is BC and the parallels are BC and AD.
(vi) Yes, it lies on the same base and between the same parallels. The same base is CD and the parallels are CD and BP.

Page No 387:

Question 2:

(i) No, it doesnt lie on the same base and between the same parallels.
(ii) No, it doesnt lie on the same base and between the same parallels.
(iii) Yes, it lies on the same base and between the same parallels. The same base is AB and the parallels are AB and DE.
(iv) No, it doesnt lie on the same base and between the same parallels.
(v) Yes, it lies on the same base and between the same parallels. The same base is BC and the parallels are BC and AD.
(vi) Yes, it lies on the same base and between the same parallels. The same base is CD and the parallels are CD and BP.

Answer:



Given: A quadrilateral ABCD and BD is a diagonal.
To prove: ABCD is a parallelogram.
Construction: Draw AM ⊥ DC and CL ⊥ AB   (extend DC and AB). Join AC, the other diagonal of ABCD.

Proof: ar(quad. ABCD) = ar(∆ABD) + ar(​∆DCB)
                                      = 2 ar(​∆ABD)                    [∵ ar​(∆ABD) = ar(​∆DCB)]
∴ ar(​∆ABD) = 12ar(quad. ABCD)                 ...(i)

Again, ar(quad. ABCD) = ar(∆ABC) + ar(​∆CDA)
                                    = 2 ar(​∆ ABC)                    [∵ ar​(∆ABC) = ar(​∆CDA)]
∴ ar(​∆ABC) = 12ar(quad. ABCD)                ...(ii)
From (i) and (ii), we have:
 ar(​∆ABD) = ar(​∆ABC) = 12 AB â¨¯ BD = 12 AB â¨¯ CL
 ⇒ CL = BD
 ⇒ DC |​​| AB
Similarly, AD |​​| BC.
Hence, ABCD is a paralleogram.
∴ ar(​|​| gm ABCD) = base â€‹â¨¯ height = 5 ​⨯ 7 = 35 cm2

Page No 387:

Question 3:



Given: A quadrilateral ABCD and BD is a diagonal.
To prove: ABCD is a parallelogram.
Construction: Draw AM ⊥ DC and CL ⊥ AB   (extend DC and AB). Join AC, the other diagonal of ABCD.

Proof: ar(quad. ABCD) = ar(∆ABD) + ar(​∆DCB)
                                      = 2 ar(​∆ABD)                    [∵ ar​(∆ABD) = ar(​∆DCB)]
∴ ar(​∆ABD) = 12ar(quad. ABCD)                 ...(i)

Again, ar(quad. ABCD) = ar(∆ABC) + ar(​∆CDA)
                                    = 2 ar(​∆ ABC)                    [∵ ar​(∆ABC) = ar(​∆CDA)]
∴ ar(​∆ABC) = 12ar(quad. ABCD)                ...(ii)
From (i) and (ii), we have:
 ar(​∆ABD) = ar(​∆ABC) = 12 AB â¨¯ BD = 12 AB â¨¯ CL
 ⇒ CL = BD
 ⇒ DC |​​| AB
Similarly, AD |​​| BC.
Hence, ABCD is a paralleogram.
∴ ar(​|​| gm ABCD) = base â€‹â¨¯ height = 5 ​⨯ 7 = 35 cm2

Answer:

ar(parallelogram ABCD) = base â€‹â¨¯ height
AB â€‹â¨¯DL = AD â€‹â¨¯ BM
⇒ 10 â€‹â€‹â¨¯ 6 = AD â€‹â¨¯ BM
⇒ AD â€‹â¨¯ 8 = 60 cm2
AD =  7.5 cm
AD = 7.5 cm



Page No 388:

Question 4:

ar(parallelogram ABCD) = base â€‹â¨¯ height
AB â€‹â¨¯DL = AD â€‹â¨¯ BM
⇒ 10 â€‹â€‹â¨¯ 6 = AD â€‹â¨¯ BM
⇒ AD â€‹â¨¯ 8 = 60 cm2
AD =  7.5 cm
AD = 7.5 cm

Answer:


Let ABCD be a rhombus and P, Q, R and S be the midpoints of AB, BC, CD and DA, respectively. 
Join the diagonals, AC and BD.
In âˆ† ABC, we have:
PQ âˆ£âˆ£ AC and PQ = 12AC                    [By midpoint theorem]
PQ=12×16=8 cm

Again, in âˆ†DACthe points S and R are the midpoints of AD and DC, respectively.
∴ SR âˆ£âˆ£ AC and SR = 12AC                    [By midpoint theorem]
SR=12×12=6 cm
Area of PQRS=length×breadth=6×8=48 cm2

Page No 388:

Question 5:


Let ABCD be a rhombus and P, Q, R and S be the midpoints of AB, BC, CD and DA, respectively. 
Join the diagonals, AC and BD.
In âˆ† ABC, we have:
PQ âˆ£âˆ£ AC and PQ = 12AC                    [By midpoint theorem]
PQ=12×16=8 cm

Again, in âˆ†DACthe points S and R are the midpoints of AD and DC, respectively.
∴ SR âˆ£âˆ£ AC and SR = 12AC                    [By midpoint theorem]
SR=12×12=6 cm
Area of PQRS=length×breadth=6×8=48 cm2

Answer:

ar(trapezium) = 12 ⨯ (sum of parallel sides) ⨯ (distance between them)
 = 12 â¨¯ (9 + 6) ⨯ 8
= 60 cm2
Hence, the area of the trapezium is 60 cm2.

Page No 388:

Question 6:

ar(trapezium) = 12 ⨯ (sum of parallel sides) ⨯ (distance between them)
 = 12 â¨¯ (9 + 6) ⨯ 8
= 60 cm2
Hence, the area of the trapezium is 60 cm2.

Answer:

(i) In BCD, 
DB2+BC2=DC2DB2=172-82=225DB=15 cm
Ar(BCD) = 12×b×h=12×8×15=60 cm2
In BAD,
DA2+AB2=DB2AB2=152-92=144AB=12 cm
Ar(DAB) = 12×b×h=12×9×12=54 cm2

Area of quad. ABCD = Ar(DAB) + Ar(BCD) = 54 + 60 = 114 cm.

(ii) Area of trap(PQRS) = 128+16×8=96 cm2

Page No 388:

Question 7:

(i) In BCD, 
DB2+BC2=DC2DB2=172-82=225DB=15 cm
Ar(BCD) = 12×b×h=12×8×15=60 cm2
In BAD,
DA2+AB2=DB2AB2=152-92=144AB=12 cm
Ar(DAB) = 12×b×h=12×9×12=54 cm2

Area of quad. ABCD = Ar(DAB) + Ar(BCD) = 54 + 60 = 114 cm.

(ii) Area of trap(PQRS) = 128+16×8=96 cm2

Answer:

∆ADL is a right angle triangle.
So, DL = 52 - 42  = 9 = 3 cm
Similarly, in ∆BMC, we have:
MC52 - 42  = 9 = 3 cm
DC =  DL + LM + MC =  3 + 7 + 3 = 13 cm
Now, ar(trapezium. ABCD) = 12⨯ (sum of parallel sides) ⨯ (distance between them)
=12 ⨯ (7 + 13) ⨯ 4
= 40 cm2
​Hence, DC = 13 cm and area of trapezium = 40 cm2

Page No 388:

Question 8:

∆ADL is a right angle triangle.
So, DL = 52 - 42  = 9 = 3 cm
Similarly, in ∆BMC, we have:
MC52 - 42  = 9 = 3 cm
DC =  DL + LM + MC =  3 + 7 + 3 = 13 cm
Now, ar(trapezium. ABCD) = 12⨯ (sum of parallel sides) ⨯ (distance between them)
=12 ⨯ (7 + 13) ⨯ 4
= 40 cm2
​Hence, DC = 13 cm and area of trapezium = 40 cm2

Answer:

ar(quad. ABCD) = ar(∆​ABD) + ar (∆DBC)
ar(∆ABD) = 12⨯ base â¨¯ height = 12⨯ BD â¨¯ AL             ...(i) 
ar(∆DBC) = 12 ⨯ BD â¨¯ CL                  ...(ii)
From (i) and (ii), we get:
​ar(quad ABCD) = 12 â¨¯BD â¨¯â€‹ AL + 12 â¨¯ BD â¨¯â€‹ CL
​ar(quad ABCD) = 12 â¨¯ BD â¨¯ ​(AL + CL)
Hence, proved.

Page No 388:

Question 9:

ar(quad. ABCD) = ar(∆​ABD) + ar (∆DBC)
ar(∆ABD) = 12⨯ base â¨¯ height = 12⨯ BD â¨¯ AL             ...(i) 
ar(∆DBC) = 12 ⨯ BD â¨¯ CL                  ...(ii)
From (i) and (ii), we get:
​ar(quad ABCD) = 12 â¨¯BD â¨¯â€‹ AL + 12 â¨¯ BD â¨¯â€‹ CL
​ar(quad ABCD) = 12 â¨¯ BD â¨¯ ​(AL + CL)
Hence, proved.

Answer:


Join AC. 
AC divides parallelogram ABCD into two congruent triangles of equal areas. 
arABC=arACD=12arABCD
M is the midpoint of AB. So, CM is the median. 
CM divides ABC in two triangles with equal area. 
arAMC=arBMC=12arABC
ar(AMCD) = ar(ACD) + ar(AMC) = ar(ABC) + ar(AMC) = â€‹ar(ABC) + 12​ar(ABC)
24=32arABCarABC=16 cm2

Page No 388:

Question 10:


Join AC. 
AC divides parallelogram ABCD into two congruent triangles of equal areas. 
arABC=arACD=12arABCD
M is the midpoint of AB. So, CM is the median. 
CM divides ABC in two triangles with equal area. 
arAMC=arBMC=12arABC
ar(AMCD) = ar(ACD) + ar(AMC) = ar(ABC) + ar(AMC) = â€‹ar(ABC) + 12​ar(ABC)
24=32arABCarABC=16 cm2

Answer:

​ar(quad ABCD) = ar(ABD) + ar(BDC)
= 12 â¨¯BD â¨¯â€‹ AL  +12 â¨¯BD â¨¯â€‹ CM
12 â¨¯BD â¨¯â€‹ ( AL + CM)
By substituting the values, we have;
ar(quad ABCD) = â€‹12 â¨¯ 14 ⨯ ( 8 + 6)
= 7 â€‹â¨¯14
= 98 cm2

Page No 388:

Question 11:

​ar(quad ABCD) = ar(ABD) + ar(BDC)
= 12 â¨¯BD â¨¯â€‹ AL  +12 â¨¯BD â¨¯â€‹ CM
12 â¨¯BD â¨¯â€‹ ( AL + CM)
By substituting the values, we have;
ar(quad ABCD) = â€‹12 â¨¯ 14 ⨯ ( 8 + 6)
= 7 â€‹â¨¯14
= 98 cm2

Answer:


We know
ar(∆APB) = 12arABCD           .....(1)                     [If a triangle and a parallelogram are on the same base and between the same parallels then the area of the triangle is equal to half the area of the parallelogram]
Similarly, 
ar(∆BQC) = 12arABCD           .....(2)
From (1) and (2)
ar(∆APB) = ar(∆BQC)
Hence Proved



Page No 389:

Question 12:


We know
ar(∆APB) = 12arABCD           .....(1)                     [If a triangle and a parallelogram are on the same base and between the same parallels then the area of the triangle is equal to half the area of the parallelogram]
Similarly, 
ar(∆BQC) = 12arABCD           .....(2)
From (1) and (2)
ar(∆APB) = ar(∆BQC)
Hence Proved

Answer:

(i) We know that parallelograms on the same base and between the same parallels are equal in area.
So, ar(MNPQ) = are(ABPQ)                   (Same base PQ and MB || PQ)                      .....(1)

(ii) If a parallelogram and a triangle are on the same base and between the same parallels then the area of the triangle is equal to half the area of the parallelogram. 
So, ar(∆ATQ) = 12ar(ABPQ)                 (Same base AQ and AQ || BP)                       .....(2)
From (1) and (2)
ar(∆ATQ) = 12ar(MNPQ)


 

Page No 389:

Question 13:

(i) We know that parallelograms on the same base and between the same parallels are equal in area.
So, ar(MNPQ) = are(ABPQ)                   (Same base PQ and MB || PQ)                      .....(1)

(ii) If a parallelogram and a triangle are on the same base and between the same parallels then the area of the triangle is equal to half the area of the parallelogram. 
So, ar(∆ATQ) = 12ar(ABPQ)                 (Same base AQ and AQ || BP)                       .....(2)
From (1) and (2)
ar(∆ATQ) = 12ar(MNPQ)


 

Answer:

∆CDA and â€‹âˆ†CBD lies on the same base and between the same parallel lines.
So, ar(​∆CDA) = ar(CDB)            ...(i)
Subtracting ar(​∆OCD) from both sides of equation (i), we get:
ar(​∆CDA) - ar(​∆OCD) = ar(​​∆CDB) - ar (​​∆OCD)
⇒ ar(​​∆AOD) = ar(​​∆BOC)

Page No 389:

Question 14:

∆CDA and â€‹âˆ†CBD lies on the same base and between the same parallel lines.
So, ar(​∆CDA) = ar(CDB)            ...(i)
Subtracting ar(​∆OCD) from both sides of equation (i), we get:
ar(​∆CDA) - ar(​∆OCD) = ar(​​∆CDB) - ar (​​∆OCD)
⇒ ar(​​∆AOD) = ar(​​∆BOC)

Answer:

∆DEC and â€‹âˆ†DEB lies on the same base and between the same parallel lines.
So, ar(​∆DEC) = ar(∆DEB)                      ...(1)

(i) On adding​ ar(∆ADE)​ in both sides of equation (1), we get:
  ar(​∆DEC) + ar(∆ADE)​ = ar(∆DEB) + ar(∆ADE)​ â€‹                 
⇒ ar(​​∆ACD) = ar(​​∆ABE

  (ii) On subtracting​ ar(ODE)​ from both sides of equation (1), we get:​
   ar(​∆DEC) - ar(∆ODE)​ = ar(∆DEB) - ar(∆ODE)​ â€‹      â€‹
⇒ ar(​​∆OCE) = ar(​∆OBD)

Page No 389:

Question 15:

∆DEC and â€‹âˆ†DEB lies on the same base and between the same parallel lines.
So, ar(​∆DEC) = ar(∆DEB)                      ...(1)

(i) On adding​ ar(∆ADE)​ in both sides of equation (1), we get:
  ar(​∆DEC) + ar(∆ADE)​ = ar(∆DEB) + ar(∆ADE)​ â€‹                 
⇒ ar(​​∆ACD) = ar(​​∆ABE

  (ii) On subtracting​ ar(ODE)​ from both sides of equation (1), we get:​
   ar(​∆DEC) - ar(∆ODE)​ = ar(∆DEB) - ar(∆ODE)​ â€‹      â€‹
⇒ ar(​​∆OCE) = ar(​∆OBD)

Answer:



Let AD is a median of 
∆ABC and D is the midpoint of BC. AD divides âˆ†ABC in two triangles: ∆ABD and âˆ†ADC.
To prove: ar(∆ABD) = ar(∆ADC)
Construction: Draw AL ⊥ BC.
Proof:
Since D is the midpoint of BC, we have:
BD = DC
Multiplying with 12AL on both sides, we get:
12 × BD × AL12 × DC × AL 
⇒ ar(∆ABD) = ar(∆ADC)

Page No 389:

Question 16:



Let AD is a median of 
∆ABC and D is the midpoint of BC. AD divides âˆ†ABC in two triangles: ∆ABD and âˆ†ADC.
To prove: ar(∆ABD) = ar(∆ADC)
Construction: Draw AL ⊥ BC.
Proof:
Since D is the midpoint of BC, we have:
BD = DC
Multiplying with 12AL on both sides, we get:
12 × BD × AL12 × DC × AL 
⇒ ar(∆ABD) = ar(∆ADC)

Answer:



Let ABCD be a parallelogram and BD be its diagonal.

To prove: ar(∆ABD) = ar(∆CDB)

Proof: 
In ∆ABD and âˆ†CDB, we have:
AB = CD                    [Opposite sides of a parallelogram]
AD = CB                   [Opposite sides of a parallelogram]​

 BD  = DB                  [Common]
i.e., ∆ABD  âˆ†CDB           [ SSS criteria]
∴ ar(∆ABD) = ar(∆CDB)

Page No 389:

Question 17:



Let ABCD be a parallelogram and BD be its diagonal.

To prove: ar(∆ABD) = ar(∆CDB)

Proof: 
In ∆ABD and âˆ†CDB, we have:
AB = CD                    [Opposite sides of a parallelogram]
AD = CB                   [Opposite sides of a parallelogram]​

 BD  = DB                  [Common]
i.e., ∆ABD  âˆ†CDB           [ SSS criteria]
∴ ar(∆ABD) = ar(∆CDB)

Answer:

Line segment CD is bisected by AB at O                   (Given)
CO = OD                                .....(1)
In ΔCAO, 
AO is the median.                (From (1))
So, arΔCAO = arΔDAO          .....(2)
Similarly, 
In ΔCBD, 
BO is the median                 (From (1))
So, arΔCBO = arΔDBO          .....(3)
From (2) and (3) we have
arΔCAO + arΔCBO = arΔDBO + arΔDAO
ar(ΔABC) = ar(ΔABD)



 

Page No 389:

Question 18:

Line segment CD is bisected by AB at O                   (Given)
CO = OD                                .....(1)
In ΔCAO, 
AO is the median.                (From (1))
So, arΔCAO = arΔDAO          .....(2)
Similarly, 
In ΔCBD, 
BO is the median                 (From (1))
So, arΔCBO = arΔDBO          .....(3)
From (2) and (3) we have
arΔCAO + arΔCBO = arΔDBO + arΔDAO
ar(ΔABC) = ar(ΔABD)



 

Answer:


ar(∆BCD) = ar(∆BCE)                     (Given)
We know, triangles on the same base and having equal areas lie between the same parallels.
Thus, DE || BC. 

Page No 389:

Question 19:


ar(∆BCD) = ar(∆BCE)                     (Given)
We know, triangles on the same base and having equal areas lie between the same parallels.
Thus, DE || BC. 

Answer:


Join BD. 
Let BD and AC intersect at point O. 
O is thus the midpoint of DB and AC. 
PO is the median of DPB, 
So, 
arDPO=arBPO                     .....1arADO=arABO                     .....2Case 1:2-1arADO-arDPO=arABO-arBPO
Thus, ar(∆ADP) = ar(∆ABP)

Case II: 

arADO+arDPO=arABO+arBPO
Thus, ar(∆ADP) = ar(∆ABP)

Page No 389:

Question 20:


Join BD. 
Let BD and AC intersect at point O. 
O is thus the midpoint of DB and AC. 
PO is the median of DPB, 
So, 
arDPO=arBPO                     .....1arADO=arABO                     .....2Case 1:2-1arADO-arDPO=arABO-arBPO
Thus, ar(∆ADP) = ar(∆ABP)

Case II: 

arADO+arDPO=arABO+arBPO
Thus, ar(∆ADP) = ar(∆ABP)

Answer:

Given:  BO = OD
To prove: ar(∆ABC) = ar(∆ADC)
Proof
Since BO = OD, O is the mid point of BD.
We know that a median of a triangle divides it into two triangles of equal areas.
CO is a median of âˆ†BCD.
i.e., ar(∆COD) = ar (∆COB)            ...(i)

AO is a median of âˆ†ABD.
i.e., ar(∆AOD) = ar(∆AOB)              ...(ii)

From (i) and (ii), we have:
ar(∆COD) + ar(∆AOD) ar(∆COB) + ar(∆AOB)
∴ ar(∆ADC )​ = ar(∆ABC)

Page No 389:

Question 21:

Given:  BO = OD
To prove: ar(∆ABC) = ar(∆ADC)
Proof
Since BO = OD, O is the mid point of BD.
We know that a median of a triangle divides it into two triangles of equal areas.
CO is a median of âˆ†BCD.
i.e., ar(∆COD) = ar (∆COB)            ...(i)

AO is a median of âˆ†ABD.
i.e., ar(∆AOD) = ar(∆AOB)              ...(ii)

From (i) and (ii), we have:
ar(∆COD) + ar(∆AOD) ar(∆COB) + ar(∆AOB)
∴ ar(∆ADC )​ = ar(∆ABC)

Answer:

Given:  D is the midpoint of BC and E is the midpoint of AD.
To prove: ar(BEC)=12ar(ABC)
Proof: 
Since E is the midpoint of AD, BE is the median of âˆ†ABD.
We know that a median of a triangle divides it into two triangles of equal areas.
i.e., ar(∆BED ) = 12ar(∆ABD)                 ...(i)
Also, ar(∆CDE ) =12 ar(∆ADC)             ...(ii)

From (i) and (ii), we have:
ar(∆BED) + ar(∆CDE)​ 12 â¨¯â€‹ ar(∆ABD)​ + 12 ⨯​ ar(∆ADC)   
⇒ ar(∆BEC )​ = 12⨯ [ar(∆ABD) + ar(∆ADC)] 
⇒ ​ar(∆BEC )​ =​ 12 ⨯​ ar(∆ABC)



Page No 390:

Question 22:

Given:  D is the midpoint of BC and E is the midpoint of AD.
To prove: ar(BEC)=12ar(ABC)
Proof: 
Since E is the midpoint of AD, BE is the median of âˆ†ABD.
We know that a median of a triangle divides it into two triangles of equal areas.
i.e., ar(∆BED ) = 12ar(∆ABD)                 ...(i)
Also, ar(∆CDE ) =12 ar(∆ADC)             ...(ii)

From (i) and (ii), we have:
ar(∆BED) + ar(∆CDE)​ 12 â¨¯â€‹ ar(∆ABD)​ + 12 ⨯​ ar(∆ADC)   
⇒ ar(∆BEC )​ = 12⨯ [ar(∆ABD) + ar(∆ADC)] 
⇒ ​ar(∆BEC )​ =​ 12 ⨯​ ar(∆ABC)

Answer:

D is the midpoint of side BC of ∆ABC. 
AD is the median of âˆ†ABC. 
arABD=arACD=12arABC
E is the midpoint of BD of âˆ†ABD, 
AE is the median of âˆ†ABD
arABE=arAED=12arABD=14arABC
Also, O is the midpoint of AE, 
BO is the median of âˆ†ABE, 
arABO=arBOE=12arABE=14arABD=18arABC
Thus, ar(∆BOE) = 18ar(∆ABC)

 

Page No 390:

Question 23:

D is the midpoint of side BC of ∆ABC. 
AD is the median of âˆ†ABC. 
arABD=arACD=12arABC
E is the midpoint of BD of âˆ†ABD, 
AE is the median of âˆ†ABD
arABE=arAED=12arABD=14arABC
Also, O is the midpoint of AE, 
BO is the median of âˆ†ABE, 
arABO=arBOE=12arABE=14arABD=18arABC
Thus, ar(∆BOE) = 18ar(∆ABC)

 

Answer:

In MQC and MPB, 
MC = MB                            (M is the midpoint of BC)
CMQ = BMP                (Vertically opposite angles)
MCQ = MBP                (Alternate interior angles on the parallel lines AB and DQ)
Thus, MQC  MPB   (ASA congruency)
ar(MQC) = ar(MPB)
ar(MQC) + ar(APMCD) = ar(MPB) + ar(APMCD)
ar(APQD) = ar(ABCD)

Page No 390:

Question 24:

In MQC and MPB, 
MC = MB                            (M is the midpoint of BC)
CMQ = BMP                (Vertically opposite angles)
MCQ = MBP                (Alternate interior angles on the parallel lines AB and DQ)
Thus, MQC  MPB   (ASA congruency)
ar(MQC) = ar(MPB)
ar(MQC) + ar(APMCD) = ar(MPB) + ar(APMCD)
ar(APQD) = ar(ABCD)

Answer:

We have:
​ar(quad. ABCD) = ar(∆ACD) + ar(∆ABC)
ar(∆ABP) = ar(∆ACP)​​ + ar(∆ABC) 

∆ACD and ∆ACP are on the same base and between the same parallels AC and DP.
∴ ar(∆ACD) = ar(∆ ACP)​
By adding ar(∆ABC) on both sides, we get:
ar(∆ACD) ar(∆ABC) = ar(∆ACP)​​ + ar(∆ABC)                
⇒​ ar (quad. ABCD) = ar(∆ABP)
Hence, proved.

Page No 390:

Question 25:

We have:
​ar(quad. ABCD) = ar(∆ACD) + ar(∆ABC)
ar(∆ABP) = ar(∆ACP)​​ + ar(∆ABC) 

∆ACD and ∆ACP are on the same base and between the same parallels AC and DP.
∴ ar(∆ACD) = ar(∆ ACP)​
By adding ar(∆ABC) on both sides, we get:
ar(∆ACD) ar(∆ABC) = ar(∆ACP)​​ + ar(∆ABC)                
⇒​ ar (quad. ABCD) = ar(∆ABP)
Hence, proved.

Answer:



Given∆ABC and ∆DBC are on the same base BC.
ar(∆ABC) = ar(∆DBC)​
To prove: BC bisects AD
Construction: Draw AL ⊥ BC and DM ⊥ BC.
Proof: 
Since ∆ABC and âˆ†DBC are on the same base BC and they have equal areas, their altitudes must be equal.
i.e., AL = DM
Let AD and BC intersect at O.
Now, in âˆ†ALO and âˆ†DMO, we have:
AL = DM
ALO = ∠DMO =  90o
∠​AOL = ∠DO​M                  (Vertically opposite angles)
i.e., ∆ ALO ≅ âˆ† DMO
​​
∴​ OA = OD
Hence, BC bisects AD.

Page No 390:

Question 26:



Given∆ABC and ∆DBC are on the same base BC.
ar(∆ABC) = ar(∆DBC)​
To prove: BC bisects AD
Construction: Draw AL ⊥ BC and DM ⊥ BC.
Proof: 
Since ∆ABC and âˆ†DBC are on the same base BC and they have equal areas, their altitudes must be equal.
i.e., AL = DM
Let AD and BC intersect at O.
Now, in âˆ†ALO and âˆ†DMO, we have:
AL = DM
ALO = ∠DMO =  90o
∠​AOL = ∠DO​M                  (Vertically opposite angles)
i.e., ∆ ALO ≅ âˆ† DMO
​​
∴​ OA = OD
Hence, BC bisects AD.

Answer:

In MDA and MCP, 
DMA = CMP                  (Vertically opposite angles)
MDA = MCP                  (Alternate interior angles)
AD = CP                                 (Since AD = CB and CB = CP)
So, MDA  MCP         (ASA congruency)
DM = MC                         (CPCT)
M is the midpoint of DC
BM is the median of BDC
ar(BMC) = ar(DMB) = 7 cm2 
ar(BMC) + ar(DMB) = ar(DBC) = 7 + 7 = 14 cm2
Area of parallelogram ABCD = × ar(DBC) = 2 × 14 = 28 cm2 
 

Page No 390:

Question 27:

In MDA and MCP, 
DMA = CMP                  (Vertically opposite angles)
MDA = MCP                  (Alternate interior angles)
AD = CP                                 (Since AD = CB and CB = CP)
So, MDA  MCP         (ASA congruency)
DM = MC                         (CPCT)
M is the midpoint of DC
BM is the median of BDC
ar(BMC) = ar(DMB) = 7 cm2 
ar(BMC) + ar(DMB) = ar(DBC) = 7 + 7 = 14 cm2
Area of parallelogram ABCD = × ar(DBC) = 2 × 14 = 28 cm2 
 

Answer:


Join BM and AC. 
ar(∆ADC) = 12bh = 12×DC×h
ar(∆ABM) = 12×AB×h
AB = DC                               (Since ABCD is a parallelogram)
So, ar(∆ADC) = ar(∆ABM)
ar(∆ADC) + ar(∆AMC) = ar(∆ABM) + ar(∆AMC)
ar(∆ADM) = ar(ABMC)
Hence Proved

Page No 390:

Question 28:


Join BM and AC. 
ar(∆ADC) = 12bh = 12×DC×h
ar(∆ABM) = 12×AB×h
AB = DC                               (Since ABCD is a parallelogram)
So, ar(∆ADC) = ar(∆ABM)
ar(∆ADC) + ar(∆AMC) = ar(∆ABM) + ar(∆AMC)
ar(∆ADM) = ar(ABMC)
Hence Proved

Answer:

Given:  ABCD is a parallelogram and P, Q, R and S are the midpoints of sides AB, BC, CD and DA, respectively.
To prove: ar(parallelogram PQRS ) = 12 × ar(parallelogram ABCD )
Proof: 
In âˆ†ABC, PQ || AC and PQ = 12 × AC              [ By midpoint theorem] 
Again, in 
∆DAC, the points S and R are the mid points of AD and DC, respectively.
∴ SR || AC and SR = 12 × AC                                   [ By midpoint theorem] 
Now, PQ 
|| AC and SR || AC  
​PQ || SR
Also, PQ = SR =
12 × AC
∴ PQ || SR and PQ = SR
Hence, PQRS is a parallelogram.

Now, ar(parallelogram​ PQRS) = ar(∆PSQ) + ar(∆SRQ)                       ...(i)
also, ar(parallelogram ABCD) = ar(parallelogram ABQS) + ar(parallelogram SQCD)            ...(ii)

∆PSQ and parallelogram ABQS are on the same base and between the same parallel lines.
So, ar(∆PSQ ) =12 × ar(parallelogram ABQS)                         ...(iii)
Similarly, âˆ†SRQ and parallelogram SQCD are on the same base and between the same parallel lines.
So, ar(∆SRQ ) = 12 × ar(parallelogram SQCD)                        ...(iv)
Putting the values from (iii) and (iv) in (i), we get:
  ar(parallelogram​ PQRS) = 12 × ar(parallelogram ABQS)​ + 12 × ar(parallelogram SQCD)
From (ii), we get:
ar(parallelogram​ PQRS) = 12 × ar(parallelogram ABCD)

Page No 390:

Question 29:

Given:  ABCD is a parallelogram and P, Q, R and S are the midpoints of sides AB, BC, CD and DA, respectively.
To prove: ar(parallelogram PQRS ) = 12 × ar(parallelogram ABCD )
Proof: 
In âˆ†ABC, PQ || AC and PQ = 12 × AC              [ By midpoint theorem] 
Again, in 
∆DAC, the points S and R are the mid points of AD and DC, respectively.
∴ SR || AC and SR = 12 × AC                                   [ By midpoint theorem] 
Now, PQ 
|| AC and SR || AC  
​PQ || SR
Also, PQ = SR =
12 × AC
∴ PQ || SR and PQ = SR
Hence, PQRS is a parallelogram.

Now, ar(parallelogram​ PQRS) = ar(∆PSQ) + ar(∆SRQ)                       ...(i)
also, ar(parallelogram ABCD) = ar(parallelogram ABQS) + ar(parallelogram SQCD)            ...(ii)

∆PSQ and parallelogram ABQS are on the same base and between the same parallel lines.
So, ar(∆PSQ ) =12 × ar(parallelogram ABQS)                         ...(iii)
Similarly, âˆ†SRQ and parallelogram SQCD are on the same base and between the same parallel lines.
So, ar(∆SRQ ) = 12 × ar(parallelogram SQCD)                        ...(iv)
Putting the values from (iii) and (iv) in (i), we get:
  ar(parallelogram​ PQRS) = 12 × ar(parallelogram ABQS)​ + 12 × ar(parallelogram SQCD)
From (ii), we get:
ar(parallelogram​ PQRS) = 12 × ar(parallelogram ABCD)

Answer:

Figure
CF is median of ABC.
ar(BCF) = 12(ABC)                     .....(1)
Similarly, BE is the median of ABC,
ar(ABE) = 12(ABC)                     .....(2)
From (1) and (2) we have 
ar(BCF) = ar(ABE)
ar(BCF) - ar(BFG) = ar(ABE) - ar(BFG)
ar(∆BCG) = ar(AFGE)
 



Page No 391:

Question 30:

Figure
CF is median of ABC.
ar(BCF) = 12(ABC)                     .....(1)
Similarly, BE is the median of ABC,
ar(ABE) = 12(ABC)                     .....(2)
From (1) and (2) we have 
ar(BCF) = ar(ABE)
ar(BCF) - ar(BFG) = ar(ABE) - ar(BFG)
ar(∆BCG) = ar(AFGE)
 

Answer:


Given: D is a point on BC of âˆ†ABC, such that BD = 12DC
To prove:  ar(∆ABD) = 13ar(∆ABC)
Construction: Draw AL ⊥ BC.
Proof: 
In ∆ABC, we have:
BC = BD + DC
 
⇒​ BD​ + 2 BD = 3 × BD
Now, we have:
ar(∆ABD)​ = 12​ ×​ BD ×​ AL
ar(∆ABC)​ = 12​ ×​ BC ×​ AL
⇒  ar(∆ABC) = 12 ×​ 3BD ×​ AL = 3 ×​ 12×BD×AL
⇒ ar(∆ABC)​ = 3 × ar(∆ABD)
∴ â€‹ar(∆ABD) = â€‹13​ar(∆ABC)

Page No 391:

Question 31:


Given: D is a point on BC of âˆ†ABC, such that BD = 12DC
To prove:  ar(∆ABD) = 13ar(∆ABC)
Construction: Draw AL ⊥ BC.
Proof: 
In ∆ABC, we have:
BC = BD + DC
 
⇒​ BD​ + 2 BD = 3 × BD
Now, we have:
ar(∆ABD)​ = 12​ ×​ BD ×​ AL
ar(∆ABC)​ = 12​ ×​ BC ×​ AL
⇒  ar(∆ABC) = 12 ×​ 3BD ×​ AL = 3 ×​ 12×BD×AL
⇒ ar(∆ABC)​ = 3 × ar(∆ABD)
∴ â€‹ar(∆ABD) = â€‹13​ar(∆ABC)

Answer:

E is the midpoint of CA. 
So, AE = EC                            .....(1)
Also, BD = 12 CA                    (Given)
So, BD = AE                            .....(2)
From (1) and (2) we have
BD = EC
BD || CA and BD = EC so, BDEC is a parallelogram
BE acts as the median of ABC
so, ar(BCE) = ar(ABE) = 12arABC                  .....(1)
ar(DBC) = ar(BCE)                  .....(2)                  (Triangles on the same base and between the same parallels are equal in area) 
From (1) and (2) 
ar(∆ABC) = 2ar(∆DBC)
 

Page No 391:

Question 32:

E is the midpoint of CA. 
So, AE = EC                            .....(1)
Also, BD = 12 CA                    (Given)
So, BD = AE                            .....(2)
From (1) and (2) we have
BD = EC
BD || CA and BD = EC so, BDEC is a parallelogram
BE acts as the median of ABC
so, ar(BCE) = ar(ABE) = 12arABC                  .....(1)
ar(DBC) = ar(BCE)                  .....(2)                  (Triangles on the same base and between the same parallels are equal in area) 
From (1) and (2) 
ar(∆ABC) = 2ar(∆DBC)
 

Answer:

Given:  ABCDE is a pentagon.  EG || DA and CF || DB.
To prove: ar(pentagon ABCDE ) =  ar( âˆ†DGF) 
Proof: 
ar(pentagon ABCDE )​ = ar(∆DBC) + ar(∆ADE ) + ar(∆ABD)               ...(i)
Also, ar(∆DGF) = ar(∆DBF) + ar(∆ADG) + ar(∆ABD )                ...(ii)

Now, ∆DBC and ∆DBF lie on the same base and between the same parallel lines. 
∴ ar(∆DBC) = ar(∆DBF)                         ...(iii)               
Similarly, ∆ADE and ∆ADG lie on same base and between the same parallel lines.  
 ∴ ar(∆ADE) = ar(∆ADG)                       ...(iv)

From (iii) and (iv), we have:
ar(∆DBC) + ar(∆ADE) = ar(∆DBF) + ar(∆ADG)
Adding ar(∆ABD) on both sides, we get:
ar(∆DBC) + ar(∆ADE) + ar(∆ABD) = ar (∆DBF) + ar(∆ADG) + ar(∆ABD
By substituting the values from (i) and (ii), we get:
ar(pentagon ABCDE) =  ar(∆DGF) 

Page No 391:

Question 33:

Given:  ABCDE is a pentagon.  EG || DA and CF || DB.
To prove: ar(pentagon ABCDE ) =  ar( âˆ†DGF) 
Proof: 
ar(pentagon ABCDE )​ = ar(∆DBC) + ar(∆ADE ) + ar(∆ABD)               ...(i)
Also, ar(∆DGF) = ar(∆DBF) + ar(∆ADG) + ar(∆ABD )                ...(ii)

Now, ∆DBC and ∆DBF lie on the same base and between the same parallel lines. 
∴ ar(∆DBC) = ar(∆DBF)                         ...(iii)               
Similarly, ∆ADE and ∆ADG lie on same base and between the same parallel lines.  
 ∴ ar(∆ADE) = ar(∆ADG)                       ...(iv)

From (iii) and (iv), we have:
ar(∆DBC) + ar(∆ADE) = ar(∆DBF) + ar(∆ADG)
Adding ar(∆ABD) on both sides, we get:
ar(∆DBC) + ar(∆ADE) + ar(∆ABD) = ar (∆DBF) + ar(∆ADG) + ar(∆ABD
By substituting the values from (i) and (ii), we get:
ar(pentagon ABCDE) =  ar(∆DGF) 

Answer:

arCFA=arCFB                            (Triangles on the same base CF and between the same parallels CF || BA will be equal in area)
arCFA-arCFG=arCFB-arCFGarAFG=arCBG
Hence Proved
 

Page No 391:

Question 34:

arCFA=arCFB                            (Triangles on the same base CF and between the same parallels CF || BA will be equal in area)
arCFA-arCFG=arCFB-arCFGarAFG=arCBG
Hence Proved
 

Answer:

Given: D is a point on BC of âˆ† ABC, such that BD : DC =  m : n
To prove:  ar(∆ABD) : ar(∆ADC) = m : n
Construction: Draw AL ⊥ BC.
Proof: 
ar(∆ABD)​ = 12 ×​ BD ×​ AL                     ...(i)
ar(∆ADC)​ = 12​ ×​ DC ×​ AL                   ...(ii)
Dividing (i) by (ii), we get:
ar(ABD)ar(ADC=12×BD×AL12×DC×AL=BDDC=mn

∴ ar(∆ABD) : ar(∆ADC) = mn

Page No 391:

Question 35:

Given: D is a point on BC of âˆ† ABC, such that BD : DC =  m : n
To prove:  ar(∆ABD) : ar(∆ADC) = m : n
Construction: Draw AL ⊥ BC.
Proof: 
ar(∆ABD)​ = 12 ×​ BD ×​ AL                     ...(i)
ar(∆ADC)​ = 12​ ×​ DC ×​ AL                   ...(ii)
Dividing (i) by (ii), we get:
ar(ABD)ar(ADC=12×BD×AL12×DC×AL=BDDC=mn

∴ ar(∆ABD) : ar(∆ADC) = mn

Answer:


Construction: Draw a perpendicular from point D to the opposite side AB, meeting AB at Q and MN at P.
Let length DQ = h 
Given, M and N are the midpoints of AD and BC respectively. 
So, MN || AB || DC and MN = 12AB+DC=a+b2
M is the mid point of AD and MP || AB so by converse of mid point theorem,
MP || AQ and P will be the mid point of DQ. 
arDCNM=12×DPDC+MN=12hb+a+b2=h4a+3barMNBA=12×PQAB+MN=12ha+a+b2=h4b+3a
ar(DCNM) : ar(MNBA) = (a + 3b) : (3a + b)
 

Page No 391:

Question 36:


Construction: Draw a perpendicular from point D to the opposite side AB, meeting AB at Q and MN at P.
Let length DQ = h 
Given, M and N are the midpoints of AD and BC respectively. 
So, MN || AB || DC and MN = 12AB+DC=a+b2
M is the mid point of AD and MP || AB so by converse of mid point theorem,
MP || AQ and P will be the mid point of DQ. 
arDCNM=12×DPDC+MN=12hb+a+b2=h4a+3barMNBA=12×PQAB+MN=12ha+a+b2=h4b+3a
ar(DCNM) : ar(MNBA) = (a + 3b) : (3a + b)
 

Answer:


Construction: Draw a perpendicular from point D to the opposite side CD, meeting CD at Q and EF at P.
Let length AQ = h 
Given, E and F are the midpoints of AD and BC respectively. 
So, EF || AB || DC and EF = 12AB+DC=a+b2
E is the mid point of AD and EP || AB so by converse of mid point theorem,
EP || DQ and P will be the mid point of AQ. 
arABFE=12×APAB+EF=12hb+a+b2=h4a+3barEFCD=12×PQCD+EF=12ha+a+b2=h4b+3a
ar(ABEF) : ar(EFCD) = (a + 3b) : (3a + b)
Here a = 24 cm and b = 16 cm
So, arABEFarEFCD=24+3×1616+3×24=911

Page No 391:

Question 37:


Construction: Draw a perpendicular from point D to the opposite side CD, meeting CD at Q and EF at P.
Let length AQ = h 
Given, E and F are the midpoints of AD and BC respectively. 
So, EF || AB || DC and EF = 12AB+DC=a+b2
E is the mid point of AD and EP || AB so by converse of mid point theorem,
EP || DQ and P will be the mid point of AQ. 
arABFE=12×APAB+EF=12hb+a+b2=h4a+3barEFCD=12×PQCD+EF=12ha+a+b2=h4b+3a
ar(ABEF) : ar(EFCD) = (a + 3b) : (3a + b)
Here a = 24 cm and b = 16 cm
So, arABEFarEFCD=24+3×1616+3×24=911

Answer:

In PAC, 
PA || DE and E is the midpoint of AC
So, D is the midpoint of PC by converse of midpoint theorem.
Also, DE=12PA                         .....(1)
Similarly, DE=12AQ                  .....(2)
From (1) and (2) we have 
PA = AQ
∆ABQ and ∆ACP are on same base PQ and between same parallels PQ and BC
ar(∆ABQ) = ar(∆ACP) 



Page No 392:

Question 38:

In PAC, 
PA || DE and E is the midpoint of AC
So, D is the midpoint of PC by converse of midpoint theorem.
Also, DE=12PA                         .....(1)
Similarly, DE=12AQ                  .....(2)
From (1) and (2) we have 
PA = AQ
∆ABQ and ∆ACP are on same base PQ and between same parallels PQ and BC
ar(∆ABQ) = ar(∆ACP) 

Answer:

In âˆ†RSC and âˆ†PQB
CRS = BPQ                       (CD || AB) so, corresponding angles are equal)
CSR = BQP                        ( SC || QB so, corresponding angles are equal)
SC = QB                                    (BQSC is a parallelogram)
So, âˆ†RSC  ∆PQB                   (AAS congruency)
Thus, ar(∆RSC) = ar(∆PQB)
 



Page No 395:

Question 1:

In âˆ†RSC and âˆ†PQB
CRS = BPQ                       (CD || AB) so, corresponding angles are equal)
CSR = BQP                        ( SC || QB so, corresponding angles are equal)
SC = QB                                    (BQSC is a parallelogram)
So, âˆ†RSC  ∆PQB                   (AAS congruency)
Thus, ar(∆RSC) = ar(∆PQB)
 

Answer:


In this figure, both the triangles are on the same base (QR) but not on the same parallels.



Page No 396:

Question 2:


In this figure, both the triangles are on the same base (QR) but not on the same parallels.

Answer:


In this figure, the following polygons lie on the same base and between the same parallel lines:
a) Parallelogram ABCD
b) ​​​Parallelogram ABPQ

Page No 396:

Question 3:


In this figure, the following polygons lie on the same base and between the same parallel lines:
a) Parallelogram ABCD
b) ​​​Parallelogram ABPQ

Answer:

(a)  triangles of equal areas

Page No 396:

Question 4:

(a)  triangles of equal areas

Answer:

(c)114 cm2

ar (quad. ABCD) =  ar (∆ ABC)  +  ar (∆ ACD)
In right angle triangle ACD, we have:
AC  = 172 - 82 = 225 = 15 cm
In right angle triangle ABC, we have:
BC152 - 92 = 144 = 12 cm
Now, we have the following:
ar(∆ABC) = 12 × 12 × 9 = 54 cm2
ar(∆ADC) = 12 × 15 × 8 = 60 cm2
ar(quad. ABCD) =​ 54 + 60 = 114 cm2

Page No 396:

Question 5:

(c)114 cm2

ar (quad. ABCD) =  ar (∆ ABC)  +  ar (∆ ACD)
In right angle triangle ACD, we have:
AC  = 172 - 82 = 225 = 15 cm
In right angle triangle ABC, we have:
BC152 - 92 = 144 = 12 cm
Now, we have the following:
ar(∆ABC) = 12 × 12 × 9 = 54 cm2
ar(∆ADC) = 12 × 15 × 8 = 60 cm2
ar(quad. ABCD) =​ 54 + 60 = 114 cm2

Answer:

(c)124 cm2

In the right angle triangle BEC, we have:
EC  = 172-152=289-225=64=8 cm
ar(trapez. ABCD) = 12×(sum of parallel sides)×distance between them=12×31×8=124 cm2

Page No 396:

Question 6:

(c)124 cm2

In the right angle triangle BEC, we have:
EC  = 172-152=289-225=64=8 cm
ar(trapez. ABCD) = 12×(sum of parallel sides)×distance between them=12×31×8=124 cm2

Answer:

(c) 34 cm2

ar(parallelogram ABCD) = base × height = 5 â€‹× 6.8 =  34 cm2

Page No 396:

Question 7:

(c) 34 cm2

ar(parallelogram ABCD) = base × height = 5 â€‹× 6.8 =  34 cm2

Answer:

(d) 13 cm2
The diagonals of a parallelogram divides it into four triangles of equal areas.
∴ Area of âˆ†OAB14 ⨯ ar(||gm ABCD)
⇒ ar(∆OAB) = ​​14 ⨯​ 52 = 13 cm2


​

Page No 396:

Question 8:

(d) 13 cm2
The diagonals of a parallelogram divides it into four triangles of equal areas.
∴ Area of âˆ†OAB14 ⨯ ar(||gm ABCD)
⇒ ar(∆OAB) = ​​14 ⨯​ 52 = 13 cm2


​

Answer:

(a) 40 cm2
ar(||gm ABCD) = base × height =  10 â€‹× 4 =  40 cm2



Page No 397:

Question 9:

(a) 40 cm2
ar(||gm ABCD) = base × height =  10 â€‹× 4 =  40 cm2

Answer:

Area of a parallelogram is base into height.
Height = DL = NB
Base = AB = CD
So, area of parallelogram ABCD = DC × DL
Hence, the correct answer is option (c). 

Page No 397:

Question 10:

Area of a parallelogram is base into height.
Height = DL = NB
Base = AB = CD
So, area of parallelogram ABCD = DC × DL
Hence, the correct answer is option (c). 

Answer:

Parallelograms on the same base and between the same parallels are equal in area.
So, the ratio of their areas will be 1 : 1.  
Hence, the correct answer is option (b). 

Page No 397:

Question 11:

Parallelograms on the same base and between the same parallels are equal in area.
So, the ratio of their areas will be 1 : 1.  
Hence, the correct answer is option (b). 

Answer:

We know parallelogram on the same base and between the same parallels are equal in area. 
Here, AB is the common base and AB || PD
Hence, ar(ABCD) = ar(ABPQ)                             .....(1)
Also, when a triangle and a parallelogram are on the same base and between the same parallels then the
area of triangle is half the area of the parallelogram. 
Here, for the âˆ†BMP and parallelogrm ABPQ, BP is the common base and they are between the common parallels BP and AQ
So, ar(∆BMP) = 12 ar(||gm ABPQ)                      .....(2)
From (1) and (2) we have
ar(∆BMP) = 12 ar(||gm ABCD) 
Thus, the given statement is true.
Hence, the correct answer is option (a).    
 

Page No 397:

Question 12:

We know parallelogram on the same base and between the same parallels are equal in area. 
Here, AB is the common base and AB || PD
Hence, ar(ABCD) = ar(ABPQ)                             .....(1)
Also, when a triangle and a parallelogram are on the same base and between the same parallels then the
area of triangle is half the area of the parallelogram. 
Here, for the âˆ†BMP and parallelogrm ABPQ, BP is the common base and they are between the common parallels BP and AQ
So, ar(∆BMP) = 12 ar(||gm ABPQ)                      .....(2)
From (1) and (2) we have
ar(∆BMP) = 12 ar(||gm ABCD) 
Thus, the given statement is true.
Hence, the correct answer is option (a).    
 

Answer:


D, E and F are the midpoints of sides BC, AC and AB respectively. 
On joining FE, we divide ABC into 4 triangles of equal area.
Also, median of a triangle divides it into two triangles with equal area
arAFDE=arAFE+arFED=2arAFE=2×14arABC=12arABC
Hence, the correct answer is option (a). 

Page No 397:

Question 13:


D, E and F are the midpoints of sides BC, AC and AB respectively. 
On joining FE, we divide ABC into 4 triangles of equal area.
Also, median of a triangle divides it into two triangles with equal area
arAFDE=arAFE+arFED=2arAFE=2×14arABC=12arABC
Hence, the correct answer is option (a). 

Answer:

(b) 96 cm2
Area of the rhombus = 12 × product of diagonals = 12 ×​ 12 â€‹× 16 = 96 cm2

Page No 397:

Question 14:

(b) 96 cm2
Area of the rhombus = 12 × product of diagonals = 12 ×​ 12 â€‹× 16 = 96 cm2

Answer:

(c) 65 cm2
Area of the trapezium = 12 × (sum of parallel sides) × distance between them
12 ×​ ( 12 + 8) â€‹× 6.5
= 65 cm2

Page No 397:

Question 15:

(c) 65 cm2
Area of the trapezium = 12 × (sum of parallel sides) × distance between them
12 ×​ ( 12 + 8) â€‹× 6.5
= 65 cm2

Answer:

(b) 40 cm2

In right angled triangle MBC, we have:
MC52 - 42 = 9 = 3 cm
In right angled triangle ADL, we have:
DL52 - 42 = 9 = 3 cm

Now, CD = ML + MC + LD = 7 + 3 + 3 = 13 cm
Area of the trapezium = 12 × (sum of parallel sides) × distance between them
12 ×​ ( 13 + 7) â€‹× 4
= 40 cm2

Page No 397:

Question 16:

(b) 40 cm2

In right angled triangle MBC, we have:
MC52 - 42 = 9 = 3 cm
In right angled triangle ADL, we have:
DL52 - 42 = 9 = 3 cm

Now, CD = ML + MC + LD = 7 + 3 + 3 = 13 cm
Area of the trapezium = 12 × (sum of parallel sides) × distance between them
12 ×​ ( 13 + 7) â€‹× 4
= 40 cm2

Answer:

(b)128 cm2

ar(quad ABCD) = ar (∆ ABD) + â€‹ar (∆ DBC)
​
We have the following:
ar(∆ABD) = 12 × base â€‹× height â€‹= ​12× 16 â€‹× 9 = 72 cm2
ar(∆DBC) = 12 × base â€‹× height â€‹= ​12 × 16 â€‹× 7 = 56 cm2

∴ ar(quad ABCD) =​ 72 + 56 = 128 cm2



Page No 398:

Question 17:

(b)128 cm2

ar(quad ABCD) = ar (∆ ABD) + â€‹ar (∆ DBC)
​
We have the following:
ar(∆ABD) = 12 × base â€‹× height â€‹= ​12× 16 â€‹× 9 = 72 cm2
ar(∆DBC) = 12 × base â€‹× height â€‹= ​12 × 16 â€‹× 7 = 56 cm2

∴ ar(quad ABCD) =​ 72 + 56 = 128 cm2

Answer:

(a)3:1

ABCD is a rhombus. So all of its sides are equal.
Now, BC = DC 
⇒ ∠BDC = ∠DBC = xo   (Angles opposite to equal sides are equal)
Also, ∠BCD = 60o
xo + xo + 60o = 180o 
⇒​ 2xo = 120o
⇒​ xo = 60o
i.e., ∠BCD = BDC = ∠DBC 60o
So, â€‹âˆ†BCD is an equilateral triangle.
BD = BC = a
Also, OB = a /2
Now, in ∆OAB, we have:
  AB2=  OA2 + OB2 
OA2=AB2-OB2=a2-a22=a2-a24=3a24OA2=3a24OA=3a24OA=3a2Now, AC=2×OA=2×3a2=3a AC:BD=3a:a =3 :1

Page No 398:

Question 18:

(a)3:1

ABCD is a rhombus. So all of its sides are equal.
Now, BC = DC 
⇒ ∠BDC = ∠DBC = xo   (Angles opposite to equal sides are equal)
Also, ∠BCD = 60o
xo + xo + 60o = 180o 
⇒​ 2xo = 120o
⇒​ xo = 60o
i.e., ∠BCD = BDC = ∠DBC 60o
So, â€‹âˆ†BCD is an equilateral triangle.
BD = BC = a
Also, OB = a /2
Now, in ∆OAB, we have:
  AB2=  OA2 + OB2 
OA2=AB2-OB2=a2-a22=a2-a24=3a24OA2=3a24OA=3a24OA=3a2Now, AC=2×OA=2×3a2=3a AC:BD=3a:a =3 :1

Answer:

(d) 8 cm2

Since ||gm  ABCD and ||gm ABFE are on the same base and between the same parallel lines, we have:
ar(||gm ABFE​) = ar(||gm ABCD​) = 25 cm2
⇒ ar(∆BCF )ar(||gm ABFE​)​ - ar(quad EABC​)​ = ( 25 - 17) = 8 cm2

Page No 398:

Question 19:

(d) 8 cm2

Since ||gm  ABCD and ||gm ABFE are on the same base and between the same parallel lines, we have:
ar(||gm ABFE​) = ar(||gm ABCD​) = 25 cm2
⇒ ar(∆BCF )ar(||gm ABFE​)​ - ar(quad EABC​)​ = ( 25 - 17) = 8 cm2

Answer:

(b) 1:4

∆ABC and ∆BDE are two equilateral triangles​ and D is the midpoint of BC.
Let AB = BC = AC =  a
Then BD = BE = ED =  a2
∴ ar(BDE)ar(ABC)=34AB234BE2 =a22a2= 14
So, required ratio = 1 : 4

Page No 398:

Question 20:

(b) 1:4

∆ABC and ∆BDE are two equilateral triangles​ and D is the midpoint of BC.
Let AB = BC = AC =  a
Then BD = BE = ED =  a2
∴ ar(BDE)ar(ABC)=34AB234BE2 =a22a2= 14
So, required ratio = 1 : 4

Answer:

(a) 8 cm2

Let the distance between AB and CD be h cm.
Then ar(||gm APQD​) = AP ×​ h
= 12 ×​ AB ×​h               (AP = 12AB )
12 ×​ ar(||gm ABCD)                [ ar(|| gm ABCD) = AB ×​h )
∴ ar (||gm APQD​) = 12 ×​ 16 = 8 cm2

Page No 398:

Question 21:

(a) 8 cm2

Let the distance between AB and CD be h cm.
Then ar(||gm APQD​) = AP ×​ h
= 12 ×​ AB ×​h               (AP = 12AB )
12 ×​ ar(||gm ABCD)                [ ar(|| gm ABCD) = AB ×​h )
∴ ar (||gm APQD​) = 12 ×​ 16 = 8 cm2

Answer:

(d) rhombus of 24 cm2

We know that the figure formed by joining the midpoints of the adjacent sides of a rectangle is a rhombus.
So, PQRS is a rhombus and SQ and PR are its diagonals.
i.e., SQ = 8 cm and PR = 6 cm
∴ ar(rhombus PQRS​) = 12 ×​ product of diagonals = 12 ×​ 8  ×​ 6 = 24 cm2               

Page No 398:

Question 22:

(d) rhombus of 24 cm2

We know that the figure formed by joining the midpoints of the adjacent sides of a rectangle is a rhombus.
So, PQRS is a rhombus and SQ and PR are its diagonals.
i.e., SQ = 8 cm and PR = 6 cm
∴ ar(rhombus PQRS​) = 12 ×​ product of diagonals = 12 ×​ 8  ×​ 6 = 24 cm2               

Answer:

(c) 14ar (∆ ABC )

Since D is the mid point of BC, AD is a median of ∆ABC and BE is the median of ∆ABD.
We know that a median of a triangle divides it into two triangles of equal areas.
 i.e., ar(∆ABD ) = 
12 ar(∆ABC)                      ...(i)

⇒ ar(∆BED) =
12​ ar(∆ABD)                      ...(ii)

From (i) and (ii), we have:
ar(∆BED)
12⨯ 12​ â¨¯â€‹ ar(∆ABC)
∴​ ar(∆BED)​ =
14⨯ ar(∆ABC)  
 ar(∆ABC)



Page No 399:

Question 23:

(c) 14ar (∆ ABC )

Since D is the mid point of BC, AD is a median of ∆ABC and BE is the median of ∆ABD.
We know that a median of a triangle divides it into two triangles of equal areas.
 i.e., ar(∆ABD ) = 
12 ar(∆ABC)                      ...(i)

⇒ ar(∆BED) =
12​ ar(∆ABD)                      ...(ii)

From (i) and (ii), we have:
ar(∆BED)
12⨯ 12​ â¨¯â€‹ ar(∆ABC)
∴​ ar(∆BED)​ =
14⨯ ar(∆ABC)  
 ar(∆ABC)

Answer:

(a) 12arABC

Since E is the midpoint of AD, BE is a median of ∆ABD.
We know that a median of a triangle divides it into two triangles of equal areas.
i.e., ar(∆BED) 12⨯ ar(∆ABD)                ...(i)
Since E is the midpoint of AD, CE is a median of ∆ADC.
We know that a median of a triangle divides it into two triangles of equal areas.
i.e., ar(∆CED ) 12⨯ ar(∆ADC)               ...(ii)

Adding (i) and (ii), we have:
ar(∆BED ) + ar(∆CED ) = 12⨯ ar(∆ABD) + 12⨯ ar(∆ADC)
⇒ ar (∆ BEC ) = 12ABD+ADC=12ABC    

Page No 399:

Question 24:

(a) 12arABC

Since E is the midpoint of AD, BE is a median of ∆ABD.
We know that a median of a triangle divides it into two triangles of equal areas.
i.e., ar(∆BED) 12⨯ ar(∆ABD)                ...(i)
Since E is the midpoint of AD, CE is a median of ∆ADC.
We know that a median of a triangle divides it into two triangles of equal areas.
i.e., ar(∆CED ) 12⨯ ar(∆ADC)               ...(ii)

Adding (i) and (ii), we have:
ar(∆BED ) + ar(∆CED ) = 12⨯ ar(∆ABD) + 12⨯ ar(∆ADC)
⇒ ar (∆ BEC ) = 12ABD+ADC=12ABC    

Answer:

(d) 18 ar (∆ ABC)

Given: D is the midpoint of BC, E is the midpoint of BD and O is the mid point of AE.
Since D is the midpoint of BC, AD is the median of âˆ†ABC.
E is the midpoint of BC, so AE is the median of âˆ†ABD. O is the midpoint of AE, so BO is median of âˆ†ABE.
We know that a median of a triangle divides it into two triangles of equal areas.
i.e., ar(∆ABD ) = 12 ⨯ ​ar(∆ABC)                ...(i)
ar(∆ABE ) =12​ â¨¯â€‹ ar(∆ABD)                        ...(ii)
ar(∆BOE) = ​12⨯​ ar(∆ABE)                       ...(iii)

From (i), (ii) and (iii), we have:
ar(∆BOE ) =​ 12ar(∆ABE)
ar(∆BOE = 12 â¨¯â€‹ 12​ ⨯​ 12​ ⨯​ ar(∆ABC)​
∴​​  ar(∆BOE )​ = 18 ar(∆ABC)18ar (∆ ABC)                    

Page No 399:

Question 25:

(d) 18 ar (∆ ABC)

Given: D is the midpoint of BC, E is the midpoint of BD and O is the mid point of AE.
Since D is the midpoint of BC, AD is the median of âˆ†ABC.
E is the midpoint of BC, so AE is the median of âˆ†ABD. O is the midpoint of AE, so BO is median of âˆ†ABE.
We know that a median of a triangle divides it into two triangles of equal areas.
i.e., ar(∆ABD ) = 12 ⨯ ​ar(∆ABC)                ...(i)
ar(∆ABE ) =12​ â¨¯â€‹ ar(∆ABD)                        ...(ii)
ar(∆BOE) = ​12⨯​ ar(∆ABE)                       ...(iii)

From (i), (ii) and (iii), we have:
ar(∆BOE ) =​ 12ar(∆ABE)
ar(∆BOE = 12 â¨¯â€‹ 12​ ⨯​ 12​ ⨯​ ar(∆ABC)​
∴​​  ar(∆BOE )​ = 18 ar(∆ABC)18ar (∆ ABC)                    

Answer:

(a) 1:2

If a triangle and a parallelogram are on the same base and between the same parallels, then the area of the triangles is half the area of the parallelogram.
i.e., area of triangle = 12× area of parallelogram
∴ Required ratio = area of triangle : area of parallelogram =12 : 1 = 1 : 2

Page No 399:

Question 26:

(a) 1:2

If a triangle and a parallelogram are on the same base and between the same parallels, then the area of the triangles is half the area of the parallelogram.
i.e., area of triangle = 12× area of parallelogram
∴ Required ratio = area of triangle : area of parallelogram =12 : 1 = 1 : 2

Answer:

(c) (3a +b) : (a +3b)

Clearly, EF12 (a + b)                   [Mid point theorem]
Let d be the distance between AB and EF.
Then d is the distance between DC and EF.
 Now, we have:ar(trap ABEF)=12a+a+b2d =3a+bd4ar(trap EFCD)=12b+a+b2d=a+3bd4 Required ratio= 3a+bd4 : a+3bd4 = (3a+b) : ( a+3b) 

Page No 399:

Question 27:

(c) (3a +b) : (a +3b)

Clearly, EF12 (a + b)                   [Mid point theorem]
Let d be the distance between AB and EF.
Then d is the distance between DC and EF.
 Now, we have:ar(trap ABEF)=12a+a+b2d =3a+bd4ar(trap EFCD)=12b+a+b2d=a+3bd4 Required ratio= 3a+bd4 : a+3bd4 = (3a+b) : ( a+3b) 

Answer:

(d) all of these
In all the mentioned quadrilaterals, a diagonal divides them into two triangles of equal areas. 

Page No 399:

Question 28:

(d) all of these
In all the mentioned quadrilaterals, a diagonal divides them into two triangles of equal areas. 

Answer:

(c) perimeter of ABCD > perimeter of ABEF

Parallelogram ABCD and rectangle ABEF lie on the same base AB, i.e., one side is common in both the figures.
In ||gm ABCD, we have:
AD is the hypotenuse of right angled triangle ADF.
So, AD > AF
∴ Perimeter of ABCD > perimeter of ABEF

Page No 399:

Question 29:

(c) perimeter of ABCD > perimeter of ABEF

Parallelogram ABCD and rectangle ABEF lie on the same base AB, i.e., one side is common in both the figures.
In ||gm ABCD, we have:
AD is the hypotenuse of right angled triangle ADF.
So, AD > AF
∴ Perimeter of ABCD > perimeter of ABEF

Answer:

(b) 40 cm2

Radius of the circle, AC = 10 cm
Diagonal of the rectangle, AC = 10 cm

Now, AB=AC2-BC2=102-252=80=45 cm Area of the rectangle=AB×AD=25×45=40 cm2



Page No 400:

Question 30:

(b) 40 cm2

Radius of the circle, AC = 10 cm
Diagonal of the rectangle, AC = 10 cm

Now, AB=AC2-BC2=102-252=80=45 cm Area of the rectangle=AB×AD=25×45=40 cm2

Answer:

(d) In a trap. ABCD, it is given that AB || DC and the diagonals AC and BD intersect at O. Then ar(∆AOB) = ar(∆COD).


Consider ∆ADB and âˆ†ADC, which do not lie on the same base but lie between same parallel lines.
i.e., ar(∆ADB) ar(∆ADC)
Subtracting ar(∆AOD) from both sides, we get:
ar(∆ADB) - ar(∆AOD) ar(∆ADC) - ar(∆AOD)
Or ar(∆ AOB) ar(∆ COD)

Page No 400:

Question 31:

(d) In a trap. ABCD, it is given that AB || DC and the diagonals AC and BD intersect at O. Then ar(∆AOB) = ar(∆COD).


Consider ∆ADB and âˆ†ADC, which do not lie on the same base but lie between same parallel lines.
i.e., ar(∆ADB) ar(∆ADC)
Subtracting ar(∆AOD) from both sides, we get:
ar(∆ADB) - ar(∆AOD) ar(∆ADC) - ar(∆AOD)
Or ar(∆ AOB) ar(∆ COD)

Answer:

(b) Area of  a ||gm=12×base×corresponding height

Area of a parallelogram  = â€‹base â€‹× corresponding height

Page No 400:

Question 32:

(b) Area of  a ||gm=12×base×corresponding height

Area of a parallelogram  = â€‹base â€‹× corresponding height

Answer:

(c) I and II

Statement I is true, because if a parallelogram and a rectangle lie on the same base and between the same parallel lines, then they have the same altitude and therefore equal areas.
Statement II is also true as area of a parallelogram = base × height
AB × DE = AD × BF
10 × 6 = 8 × AD
AD = 60 ÷ 8 = 7.5 cm
Hence, statements I and II are true.



Page No 401:

Question 33:

(c) I and II

Statement I is true, because if a parallelogram and a rectangle lie on the same base and between the same parallel lines, then they have the same altitude and therefore equal areas.
Statement II is also true as area of a parallelogram = base × height
AB × DE = AD × BF
10 × 6 = 8 × AD
AD = 60 ÷ 8 = 7.5 cm
Hence, statements I and II are true.

Answer:

(a) Both Assertion and Reason are true and Reason is a correct explanation of Assertion.

In trapezium ABCD, âˆ†ABC and âˆ†ABD  are on the same base and between the same parallel lines.
∴ ar(∆ABC) = ar(∆ABD)
⇒ ar(∆ABC) -ar(∆AOB) = ar(∆ABD) - ar(∆AOB)
⇒ ​ar(∆BOC) = ar(∆AOD
∴ Assertion (A) is true and, clearly, reason (R) gives (A).

Page No 401:

Question 34:

(a) Both Assertion and Reason are true and Reason is a correct explanation of Assertion.

In trapezium ABCD, âˆ†ABC and âˆ†ABD  are on the same base and between the same parallel lines.
∴ ar(∆ABC) = ar(∆ABD)
⇒ ar(∆ABC) -ar(∆AOB) = ar(∆ABD) - ar(∆AOB)
⇒ ​ar(∆BOC) = ar(∆AOD
∴ Assertion (A) is true and, clearly, reason (R) gives (A).

Answer:



(b) Both Assertion and Reason are true but Reason is not a correct explanation of Assertion.

Reason (R) is clearly true.
The explanation of assertion (A)​ is as follows:
ABCD is a rhombus. So, all of its sides are equal.
Now, BC = DC
⇒∠BDC = ∠DBC = x°
Also, ∠BCD = 60°
x° + x° + 60° = 180°
⇒​2x° = 120°
⇒​ x° = 60°
∴ ∠BCD = ∠BDC = ∠DBC =  60°
So, ​∆BCD is an equilateral triangle.
i.e., BD = BC = a
∴ OB = a2
Now, in âˆ† OAB, we have:
OA2=AB2-OB2=a2-a22=3a24OA=3a2 AC=2×3a2=3a
 AC:BD=3a:a=3:1
Thus,
assertion (A)​ is also true, but reason (R) does not give (A).
​Hence, the correct answer is (b).

Page No 401:

Question 35:



(b) Both Assertion and Reason are true but Reason is not a correct explanation of Assertion.

Reason (R) is clearly true.
The explanation of assertion (A)​ is as follows:
ABCD is a rhombus. So, all of its sides are equal.
Now, BC = DC
⇒∠BDC = ∠DBC = x°
Also, ∠BCD = 60°
x° + x° + 60° = 180°
⇒​2x° = 120°
⇒​ x° = 60°
∴ ∠BCD = ∠BDC = ∠DBC =  60°
So, ​∆BCD is an equilateral triangle.
i.e., BD = BC = a
∴ OB = a2
Now, in âˆ† OAB, we have:
OA2=AB2-OB2=a2-a22=3a24OA=3a2 AC=2×3a2=3a
 AC:BD=3a:a=3:1
Thus,
assertion (A)​ is also true, but reason (R) does not give (A).
​Hence, the correct answer is (b).

Answer:

(a) Both Assertion and Reason are true and Reason is a correct explanation of Assertion.

Page No 401:

Question 36:

(a) Both Assertion and Reason are true and Reason is a correct explanation of Assertion.

Answer:

(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not a correct explanation of Assertion (A).

Explanation:
Reason (R):
∴ ar(∆ABC ) = 34×(side)2=34×8×8 = 163 cm2
Thus, reason (R) is true.

Assertion (A):
Area of trapezium = 12×25+15×6 = 120 cm2
Thus, assertion (A) is true, but reason (R) does not give assertion (A).

Page No 401:

Question 37:

(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not a correct explanation of Assertion (A).

Explanation:
Reason (R):
∴ ar(∆ABC ) = 34×(side)2=34×8×8 = 163 cm2
Thus, reason (R) is true.

Assertion (A):
Area of trapezium = 12×25+15×6 = 120 cm2
Thus, assertion (A) is true, but reason (R) does not give assertion (A).

Answer:

(d) Assertion is false and Reason is true.

Clearly, reason (R) is true.
Assertion: Area of a parallelogram = base × height
AB ×​ DE = AD × BF
AD = (16 × 8) ÷ 10 = 12.8 cm

So, the assertion is ​false.

 



View NCERT Solutions for all chapters of Class 9