Find the sum of all two-digit numbers divisible by 2 or 3.

The list of 2 digit numbers that are divisible by 2 is :10, 12, 14, ........98.The above list is an AP with first term, a = 10 and common difference, d = 2Now, an = 98a + n-1d = 9810+n-12 = 982n-1 = 88n-1 = 44n = 45Now, sum of first n terms of an AP is      Sn = n22a+n-1dS45 = 4522×10+45-12 = 45220+88 = 2430The list of 2 digit numbers that are divisible by 3 is :12, 15, 18, 21, ........99.The above list is an AP with first term, a = 12 and common difference, d = 3Now, an = 99a+n-1d = 9912+n-13 = 993n-1 = 87n-1 = 29n = 30S30 = 3022×12+30-13 = 1524+87 = 1665The list of 2 digit numbers that are divisible by 6 is :12, 18, 24, .........96.The above list is an AP with first term, a = 12 and common difference, d = 6.Now, an = 96a+n-1d = 9612+n-16 = 966n-1 = 84n-1 = 14n = 15Now, S15 = 1522×12+15-16 = 15224+84 = 810Now, required sum of 2 digit numbers that is either divisible by 2 or 3 = 2430+1665-810 = 3285

  • 11
What are you looking for?