If alpha and beta are zeros of quadratic polynomial f(x)=x^{2}-2x+3 find polynomial whose roots are alpha+2,Beta+2

**Given :** α and ß are zeroes of *f*(*x*) = *x*^{2} – 2*x* + 3

So,

Now, (α + 2) + (ß + 2) = α + ß + 4 = 2 + 4 = 6

and (α + 2) (ß + 2) = αß + 2 (α + ß) + 4 = 3 + 2 × 2 + 4 = 11

So required polynomial is *x*^{2} – 6*x* + 11

**
**