Q no 2

Q2. Show that  a 1 a 2 + a 2 a 3 + a 3 a 4  ... +  a n - 1 a n + a n a 1   > n ,   where   a 1 ,   a 2   . . . an  are different positive integers.

Consider n positive integers a1a2,a2a3,a3a4,...,an-1an and ana1Since all integer are positive, we can apply A.M. and G.M. inequalityA.M.G.M.a1a2+a2a3+a3a4+...+an-1an+ana1na1a2×a2a3×a3a4×an-1an×ana11na1a2+a2a3+a3a4+...+an-1an+ana1na1a2×a2a3×a3a4×an-1an×ana11na1a2+a2a3+a3a4+...+an-1an+ana1n11na1a2+a2a3+a3a4+...+an-1an+ana1n1a1a2+a2a3+a3a4+...+an-1an+ana1n

  • 0
What are you looking for?