Q no 2 Q2. Show that a 1 a 2 + a 2 a 3 + a 3 a 4 ... + a n - 1 a n + a n a 1 > n , where a 1 , a 2 . . . an are different positive integers. Share with your friends Share 0 Aarushi Mishra answered this Consider n positive integers a1a2,a2a3,a3a4,...,an-1an and ana1Since all integer are positive, we can apply A.M. and G.M. inequalityA.M.≥G.M.a1a2+a2a3+a3a4+...+an-1an+ana1n≥a1a2×a2a3×a3a4×an-1an×ana11na1a2+a2a3+a3a4+...+an-1an+ana1n≥a1a2×a2a3×a3a4×an-1an×ana11na1a2+a2a3+a3a4+...+an-1an+ana1n≥11na1a2+a2a3+a3a4+...+an-1an+ana1n≥1a1a2+a2a3+a3a4+...+an-1an+ana1≥n 0 View Full Answer